login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^(n-k) * C(n,k) * Stirling1(n+1, k+1).
2

%I #11 Aug 02 2019 00:02:04

%S 1,2,9,58,475,4666,53116,684762,9833391,155341258,2673209561,

%T 49717424868,992847765988,21172798741316,479921234767976,

%U 11516219861132586,291523666535143823,7761036379846481206,216699016885046232187,6330257697841339549706,193043926318644060255531

%N a(n) = Sum_{k=0..n} (-1)^(n-k) * C(n,k) * Stirling1(n+1, k+1).

%H Robert Israel, <a href="/A247329/b247329.txt">Table of n, a(n) for n = 0..435</a>

%e Illustration of initial terms:

%e a(0) = 1*1 = 1 ;

%e a(1) = 1*1 + 1*1 = 2 ;

%e a(2) = 1*2 + 2*3 + 1*1 = 9 ;

%e a(3) = 1*6 + 3*11 + 3*6 + 1*1 = 58 ;

%e a(4) = 1*24 + 4*50 + 6*35 + 4*10 + 1*1 = 475 ;

%e a(5) = 1*120 + 5*274 + 10*225 + 10*85 + 5*15 + 1*1 = 4666 ;

%e a(6) = 1*720 + 6*1764 + 15*1624 + 20*735 + 15*175 + 6*21 + 1*1 = 53116 ;

%e a(7) = 1*5040 + 7*13068 + 21*13132 + 35*6769 + 35*1960 + 21*322 + 7*28 + 1*1 = 684762 ; ...

%p f:= proc(n) local k; add((-1)^(n-k)*binomial(n,k)*Stirling1(n+1,k+1),k=0..n); end proc:

%p map(f, [$0..30]); # _Robert Israel_, Aug 01 2019

%t Table[Sum[(-1)^(n-k) * Binomial[n,k] * StirlingS1[n+1, k+1],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 29 2014 *)

%o (PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))}

%o {a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n,k)*Stirling1(n+1, k+1))}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A008275 (Stirling1 numbers), A211210.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 26 2014