OFFSET
0,2
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..200
A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
FORMULA
a(n) = Sum_{j=0..2*n} (-1)^j * binomial(2*n,j) * binomial(j,n)^3.
a(n) = T(2*n,n), where triangle T(n,k) is defined by A262704.
0 = (-x^2+44*x^3+16*x^4)*y''' + (-3*x+198*x^2+96*x^3)*y'' + (-1+144*x+108*x^2)*y' + (6+12*x)*y, where y is the g.f.
Recurrence: n^3*a(n) = 2*(2*n - 1)*(11*n^2 - 11*n + 3)*a(n-1) + 4*(n-1)*(2*n - 3)*(2*n - 1)*a(n-2). - Vaclav Kotesovec, Dec 01 2017
a(n) ~ 2^(2*n - 1) * phi^(5*n + 5/2) / (5^(1/4) * (Pi*n)^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 01 2017
Conjecture: a(n) = [x^n] (1 + x)^(2*n) * P(n,(1 + x)/(1 - x))^2, where P(n,x) denotes the n-th Legendre polynomial. Cf. A005260(n) = [x^n] (1 - x)^(2*n) * P(n,(1 + x)/(1 - x))^2, due to Carlitz. - Peter Bala, Sep 21 2021
MATHEMATICA
a[n_] := Sum[(-1)^j Binomial[2n, j] Binomial[j, n]^3, {j, n, 2n}];
(* or much faster *)
a[0] = 1; a[1] = 6; a[n_] := a[n] = (2*(2*n - 1)*(11*n^2 - 11*n + 3)*a[n - 1] + 4*(n - 1)*(2*n - 3)*(2*n - 1)*a[n - 2])/n^3;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 01 2017, after Vaclav Kotesovec *)
PROG
(PARI)
a(n) = sum(j=n, 2*n, (-1)^(j)*binomial(2*n, 2*n - j)*binomial(j, n)^3);
(PARI)
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*z+w*y+w*z+x*y+x*z+y+z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(18, R, [x, y, z, w])
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 14 2016
STATUS
approved