login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274788
Diagonal of the rational function 1/(1-(wxyz + wxz + wy + wz + xy + xz + y + z)).
1
1, 7, 133, 3547, 109921, 3710287, 132371149, 4909790011, 187430229889, 7315689889207, 290621404873933, 11711948497012771, 477636896775866569, 19675331299610850871, 817461706854954936733, 34215970307619080633947, 1441443460101276484035169, 61071445002917964407145031
OFFSET
0,2
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
0 = (x^2-46*x^3-17*x^4+60*x^5-17*x^6-46*x^7+x^8)*y''' + (3*x-213*x^2+180*x^3+270*x^4-333*x^5-201*x^6+6*x^7)*y'' + (1-160*x+545*x^2-160*x^3-481*x^4-136*x^5+7*x^6)*y' + (-7+105*x-170*x^2-22*x^3-3*x^4+x^5)*y, where y is g.f.
From Vaclav Kotesovec, Mar 19 2023: (Start)
Recurrence: (n-2)*n^3*(2*n - 5)*a(n) = (2*n - 5)*(2*n - 1)*(24*n^3 - 72*n^2 + 54*n - 13)*a(n-1) - (2*n - 3)*(78*n^4 - 468*n^3 + 928*n^2 - 678*n + 161)*a(n-2) + (2*n - 5)*(2*n - 1)*(24*n^3 - 144*n^2 + 270*n - 149)*a(n-3) - (n-3)^3*(n-1)*(2*n - 1)*a(n-4).
a(n) ~ sqrt(5 + 13/sqrt(5) + sqrt(579/10 + (53*sqrt(5))/2)) * (12 + 5*sqrt(5) + 2*sqrt(67 + 30*sqrt(5)))^n / (4 * Pi^(3/2) * n^(3/2)). (End)
MATHEMATICA
a[n_] := SeriesCoefficient[1/(1 - (w x y z + w x z + w y + w z + x y + x z + y + z)), {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 16 2018 *)
PROG
(PARI)
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*z+w*y+w*z+x*y+x*z+y+z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(12, R, [x, y, z, w])
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 14 2016
STATUS
approved