login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251577 E.g.f.: exp(7*x*G(x)^6) / G(x)^6 where G(x) = 1 + x*G(x)^7 is the g.f. of A002296. 11
1, 1, 7, 133, 4501, 224497, 14926387, 1245099709, 125177105641, 14743403405857, 1991987858095039, 303781606238806549, 51624122993243471293, 9674836841745014156497, 1982441139367342976694379, 440946185623028320815311053, 105810290178441439797537070033, 27247415403508413760437930799681 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

FORMULA

Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then the e.g.f. A(x) of this sequence satisfies:

(1) A'(x)/A(x) = G(x)^6.

(2) A'(x) = exp(7*x*G(x)^6).

(3) A(x) = exp( Integral G(x)^6 dx ).

(4) A(x) = exp( Sum_{n>=1} A130565(n)*x^n/n ), where A130565(n) = binomial(7*n-2,n)/(6*n-1).

(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251587.

(6) A(x) = Sum_{n>=0} A251587(n)*(x/A(x))^n/n! and

(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251587(n),

where A251587(n) = 7^(n-5) * (n+1)^(n-7) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807).

a(n) = Sum_{k=0..n} 7^k * n!/k! * binomial(7*n-k-7, n-k) * (k-1)/(n-1) for n>1.

Recurrence: 72*(2*n-3)*(3*n-5)*(3*n-4)*(6*n-11)*(6*n-7)*(2401*n^5 - 32585*n^4 + 178311*n^3 - 492779*n^2 + 689623*n - 392491)*a(n) = 7*(282475249*n^11 - 6658345155*n^10 + 71339412375*n^9 - 458968749330*n^8 + 1971937124661*n^7 - 5947597074909*n^6 + 12867618998885*n^5 - 20002508046570*n^4 + 21938241804255*n^3 - 16207858252075*n^2 + 7281095411817*n - 1512276480000)*a(n-1) - 823543*(2401*n^5 - 20580*n^4 + 71981*n^3 - 129346*n^2 + 120663*n - 47520)*a(n-2). - Vaclav Kotesovec, Dec 07 2014

a(n) ~ 7^(7*(n-1)-1/2) / 6^(6*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 7*x^2/2! + 133*x^3/3! + 4501*x^4/4! + 224497*x^5/5! +...

such that A(x) = exp(7*x*G(x)^6) / G(x)^6

where G(x) = 1 + x*G(x)^7 is the g.f. of A002296:

G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...

Note that

A'(x) = exp(7*x*G(x)^6) = 1 + 7*x + 133*x^2/2! + 4501*x^3/3! +...

LOGARITHMIC DERIVATIVE.

The logarithm of the e.g.f. begins:

log(A(x)) = x + 6*x^2/2 + 57*x^3/3 + 650*x^4/4 + 8184*x^5/5 + 109668*x^6/6 +...

and so A'(x)/A(x) = G(x)^6.

TABLE OF POWERS OF E.G.F.

Form a table of coefficients of x^k/k! in A(x)^n as follows.

n=1: [1, 1, 7, 133, 4501, 224497, 14926387, 1245099709, ...];

n=2: [1, 2, 16, 308, 10360, 512624, 33845728, 2807075264, ...];

n=3: [1, 3, 27, 531, 17829, 876771, 57529143, 4745597787, ...];

n=4: [1, 4, 40, 808, 27184, 1331008, 86864512, 7129675840, ...];

n=5: [1, 5, 55, 1145, 38725, 1891205, 122869075, 10038831425, ...];

n=6: [1, 6, 72, 1548, 52776, 2575152, 166702752, 13564381824, ...];

n=7: [1, 7, 91, 2023, 69685, 3402679, 219682183, 17810832319, ...];

n=8: [1, 8, 112, 2576, 89824, 4395776, 283295488, 22897384832, ...]; ...

in which the main diagonal begins (see A251587):

[1, 2, 27, 808, 38725, 2575152, 219682183, 22897384832, ...]

and is given by the formula:

[x^n/n!] A(x)^(n+1) = 7^(n-5) * (n+1)^(n-6) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807) for n>=0.

MATHEMATICA

Flatten[{1, 1, Table[Sum[7^k * n!/k! * Binomial[7*n-k-7, n-k] * (k-1)/(n-1), {k, 0, n}], {n, 2, 20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)

PROG

(PARI) {a(n) = local(G=1); for(i=1, n, G=1+x*G^7 +x*O(x^n)); n!*polcoeff(exp(7*x*G^6)/G^6, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = if(n==0|n==1, 1, sum(k=0, n, 7^k * n!/k! * binomial(7*n-k-7, n-k) * (k-1)/(n-1) ))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A251587, A251667, A002296, A130565.

Cf. Variants: A243953, A251573, A251574, A251575, A251576, A251578, A251579, A251580.

Sequence in context: A245318 A274788 A274258 * A082164 A229464 A317216

Adjacent sequences: A251574 A251575 A251576 * A251578 A251579 A251580

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 07:08 EST 2022. Contains 358673 sequences. (Running on oeis4.)