login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251587
a(n) = 7^(n-5) * (n+1)^(n-7) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807).
12
1, 1, 9, 202, 7745, 429192, 31383169, 2862173104, 313456891041, 40120056928000, 5880757402778489, 971776774765633536, 178783183332534538849, 36248462186643418851328, 8031317081954231731640625, 1930762515644331053063077888, 500587184017640118192794723009, 139240118930461640299714951839744
OFFSET
0,3
LINKS
FORMULA
Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 7*x*A(x) * G(x*A(x))^6 ) / G(x*A(x))^6.
(2) A(x) = F(x*A(x)) where F(x) = exp(7*x*G(x)^6)/G(x)^6 is the e.g.f. of A251577.
(3) a(n) = [x^n/n!] F(x)^(n+1)/(n+1) where F(x) is the e.g.f. of A251577.
E.g.f.: -LambertW(-7*x) * (7 + LambertW(-7*x))^6 / (x*7^7). - Vaclav Kotesovec, Dec 07 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 202*x^3/3! + 7745*x^4/4! + 429192*x^5/5! +...
such that A(x) = exp( 7*x*A(x) * G(x*A(x))^6 ) / G(x*A(x))^6
where G(x) = 1 + x*G(x)^5 is the g.f. of A002296:
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...
RELATED SERIES.
Note that A(x) = F(x*A(x)) where F(x) = exp(7*x*G(x)^6)/G(x)^6,
F(x) = 1 + x + 7*x^2/2! + 133*x^3/3! + 4501*x^4/4! + 224497*x^5/5! +...
is the e.g.f. of A251577.
MATHEMATICA
Table[7^(n - 5)*(n + 1)^(n - 7)*(1296*n^5 + 9720*n^4 + 30555*n^3 +
50665*n^2 + 44621*n + 16807), {n, 0, 50}] (* G. C. Greubel, Nov 10 2017 *)
PROG
(PARI) {a(n) = 7^(n-5) * (n+1)^(n-7) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = local(G=1, A=1); for(i=1, n, G=1+x*G^7 +x*O(x^n));
for(i=1, n, A = exp(7*x*A * subst(G^6, x, x*A) ) / subst(G^6, x, x*A) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2014
STATUS
approved