login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251574 E.g.f.: exp(4*x*G(x)^3) / G(x)^3 where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. 11
1, 1, 4, 40, 712, 18784, 663424, 29480896, 1581976960, 99585422848, 7198258087936, 587699970912256, 53497834761985024, 5372784803063664640, 590164397145095421952, 70386834555048578596864, 9058611906733586004803584, 1251310862246447324484468736, 184665445630564847038730076160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..18.

FORMULA

Let G(x) = 1 + x*G(x)^4 be the g.f. of A002293, then the e.g.f. A(x) of this sequence satisfies:

(1) A'(x)/A(x) = G(x)^3.

(2) A'(x) = exp(4*x*G(x)^3).

(3) A(x) = exp( Integral G(x)^3 dx ).

(4) A(x) = exp( Sum_{n>=1} A006632(n)*x^n/n ), where A006632(n) = binomial(4*n-2,n)/(3*n-1).

(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251584.

(6) A(x) = Sum_{n>=0} A251584(n)*(x/A(x))^n/n! and

(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251584(n),

where A251584(n) = 4^(n-2) * (n+1)^(n-4) * (3*n^2 + 13*n + 16).

a(n) = Sum_{k=0..n} 4^k * n!/k! * binomial(4*n-k-4, n-k) * (k-1)/(n-1) for n>1.

Recurrence: 3*(3*n-5)*(3*n-4)*(4*n^2 - 23*n + 34)*a(n) = 8*(128*n^5 - 1440*n^4 + 6520*n^3 - 14906*n^2 + 17289*n - 8190)*a(n-1) + 256*(4*n^2 - 15*n + 15)*a(n-2). - Vaclav Kotesovec, Dec 07 2014

a(n) ~ 2^(8*n-9) * n^(n-2) / (3^(3*n-7/2) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 4*x^2/2! + 40*x^3/3! + 712*x^4/4! + 18784*x^5/5! +...

such that A(x) = exp(4*x*G(x)^3) / G(x)^3

where G(x) = 1 + x*G(x)^4 is the g.f. of A002293:

G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...

Note that

A'(x) = exp(4*x*G(x)^3) = 1 + 4*x + 40*x^2/2! + 712*x^3/3! + 18784*x^4/4! +...

LOGARITHMIC DERIVATIVE.

The logarithm of the e.g.f. begins:

log(A(x)) = x + 3*x^2/2 + 15*x^3/3 + 91*x^4/4 + 612*x^5/5 +...

and so A'(x)/A(x) = G(x)^3.

TABLE OF POWERS OF E.G.F.

Form a table of coefficients of x^k/k! in A(x)^n as follows.

n=1: [1, 1,  4,   40,   712,  18784,   663424,   29480896, ...];

n=2: [1, 2, 10,  104,  1840,  47888,  1669696,   73399040, ...];

n=3: [1, 3, 18,  198,  3528,  91152,  3146256,  136990656, ...];

n=4: [1, 4, 28,  328,  5944, 153376,  5257024,  227057728, ...];

n=5: [1, 5, 40,  500,  9280, 240440,  8209600,  352337600, ...];

n=6: [1, 6, 54,  720, 13752, 359424, 12263184,  523933056, ...];

n=7: [1, 7, 70,  994, 19600, 518728, 17737216,  755807920, ...];

n=8: [1, 8, 88, 1328, 27088, 728192, 25020736, 1065353216, ...]; ...

in which the main diagonal begins (see A251584):

[1, 2, 18, 328, 9280, 359424, 17737216, 1065353216, ...]

and is given by the formula:

[x^n/n!] A(x)^(n+1) = 4^(n-2) * (n+1)^(n-3) * (3*n^2 + 13*n + 16) for n>=0.

MATHEMATICA

Flatten[{1, 1, Table[Sum[4^k * n!/k! * Binomial[4*n-k-4, n-k] * (k-1)/(n-1), {k, 0, n}], {n, 2, 20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)

PROG

(PARI) {a(n) = local(G=1); for(i=1, n, G=1+x*G^4 +x*O(x^n)); n!*polcoeff(exp(4*x*G^3)/G^3, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = if(n==0|n==1, 1, sum(k=0, n, 4^k * n!/k! * binomial(4*n-k-4, n-k) * (k-1)/(n-1) ))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A251584, A251664, A002293, A006632.

Cf. Variants: A243953, A251573, A251575, A251576, A251577, A251578, A251579, A251580.

Sequence in context: A181088 A005431 A153849 * A010792 A064422 A258662

Adjacent sequences:  A251571 A251572 A251573 * A251575 A251576 A251577

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 01:15 EDT 2021. Contains 346365 sequences. (Running on oeis4.)