login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251571
G.f.: M(F(x)) is a power series in x consisting entirely of positive integer coefficients such that M(F(x) - x^k) has negative coefficients for k>0, where M(x) = 1 + x*M(x) + x*M(x)^2 is the g.f. of the Motzkin numbers A001006.
1
1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 55, 79, 113, 160, 228, 322, 455, 641, 902, 1268, 1777, 2490, 3483, 4864, 6791, 9468, 13189, 18358, 25527, 35473, 49248, 68336, 94751, 131288, 181815, 251627, 348051, 481180, 664885, 918285, 1267663, 1749212, 2412635, 3326303, 4584236, 6315428, 8697260
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 13*x^7 +...
such that A(x) = M(F(x)),
where F(x) is the g.f. of A251570:
F(x) = x - x^3 - x^4 + x^5 - x^7 - x^8 + x^10 - x^11 - x^13 - x^14 - x^16 - x^17 - x^18 - x^20 - x^22 - x^26 - x^27 - x^28 - x^29 - x^32 - x^33 - x^35 - x^36 - x^39 - x^41 - x^43 - x^44 - x^45 - x^46 - x^47 - x^48 - x^50 +...
and M(x) is the g.f. of the Motzkin numbers:
M(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 + 323*x^8 + 835*x^9 + 2188*x^10 + 5798*x^11 + 15511*x^12 +...
PROG
(PARI) /* Prints initial N+2 terms: */
N=100;
/* M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of Motzkin numbers: */
{M=1/x*serreverse(x/(1+x+x^2 +x*O(x^(2*N+10)))); M +O(x^21) }
/* Print terms as you build vector A, then print a(n) at the end: */
{A=[1, 0]; print1("1, 0, ");
for(l=1, N, A=concat(A, -3);
for(i=1, 4, A[#A]=A[#A]+1;
V=Vec(subst(M, x, x*truncate(Ser(A)) +O(x^floor(2*#A+1)) ));
if((sign(V[2*#A])+1)/2==1, print1(A[#A], ", "); break)); );
Vec(subst(M, x, x*Ser(A)))}
CROSSREFS
Sequence in context: A001521 A003143 A221718 * A017983 A139077 A017825
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 19 2015
STATUS
approved