login
A017825
Expansion of 1/(1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
1
1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 40, 59, 85, 124, 182, 265, 386, 564, 823, 1200, 1751, 2555, 3728, 5439, 7935, 11578, 16893, 24646, 35959, 52466, 76548, 111684, 162950, 237747, 346876, 506098, 738406
OFFSET
0,7
COMMENTS
Number of compositions (ordered partitions) of n into parts 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. - Ilya Gutkovskiy, May 25 2017
LINKS
FORMULA
a(n) = a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) for n>11. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[3, 12]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
LinearRecurrence[{0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13}, 50] (* Harvey P. Dale, Dec 22 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11-x^12)))); /* or */ I:=[1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13]; [n le 12 select I[n] else Self(n-3)+Self(n-4)+Self(n-5)+Self(n-6)+Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12): n in [1..50]]; // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A251571 A017983 A139077 * A247083 A159848 A017826
KEYWORD
nonn,easy
AUTHOR
STATUS
approved