login
A017983
Powers of cube root of 3 rounded to nearest integer.
22
1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 56, 81, 117, 168, 243, 350, 505, 729, 1051, 1516, 2187, 3154, 4549, 6561, 9463, 13647, 19683, 28388, 40942, 59049, 85163, 122827, 177147, 255490, 368481, 531441, 766471, 1105442, 1594323, 2299412, 3316325, 4782969, 6898235
OFFSET
0,3
LINKS
MATHEMATICA
Table[Round[3^(n/3)], {n, 0, 50}] (* Vincenzo Librandi, Jan 07 2014 *)
Round[CubeRoot[3]^Range[0, 50]] (* Harvey P. Dale, Jul 21 2023 *)
PROG
(Magma) [Round(3^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 07 2014
(Python)
from sympy import integer_nthroot
def A017983(n): return -integer_nthroot(m:=3**n, 3)[0]+integer_nthroot(m<<3, 3)[0] # Chai Wah Wu, Jun 18 2024
CROSSREFS
Cf. powers of cube root of k rounded up: A017980 (k=2), this sequence (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), A018025 (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).
Sequence in context: A003143 A221718 A251571 * A139077 A017825 A247083
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Jan 07 2014
STATUS
approved