login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372232
E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(1/2) * (1 + A(x)^(1/2)) ).
1
1, 4, 40, 688, 17152, 564864, 23212288, 1145627648, 66082594816, 4365282304000, 325074868781056, 26950224851927040, 2462208223872286720, 245811899064585814016, 26626175172644096180224, 3110339882223194198769664, 389786352057654976473726976
OFFSET
0,2
FORMULA
E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A138764.
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + A(x)^(u/r)) ), then a(n) = r * Sum_{k=0..n} (t*n+u*k+r)^(n-1) * binomial(n,k).
a(n) = 2^n * A372177(n).
PROG
(PARI) a(n, r=2, t=1, u=1) = r*sum(k=0, n, (t*n+u*k+r)^(n-1)*binomial(n, k));
CROSSREFS
Sequence in context: A181088 A005431 A153849 * A251574 A010792 A064422
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 23 2024
STATUS
approved