login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138764
E.g.f. A(x) equals the inverse function of log(x)/(x + x^2).
5
1, 2, 16, 248, 5824, 184512, 7379200, 356956672, 20274442240, 1322971320320, 97542692798464, 8020249539919872, 727662513046159360, 72215332738579824640, 7782298855258810482688, 905031449967822916026368
OFFSET
0,2
COMMENTS
Let r = radius of convergence of A(x), then:
r = 0.116689393840305520533609707610483991781804638898970699779...
A(r) = 1.835037067429188745641951736620284283425600418229813004773...
where A(r) and r satisfy:
A(r) = exp( (1 + A(r))/(1 + 2*A(r)) ) and r = 1/(A(r)*(1 + 2*A(r))).
Also, r = (1-t)^2/(t*(1+t)) where (t/(1-t))^(1+t) = e. [Paul D. Hanna, Oct 03 2020, derived from the asymptotic formula given by Vaclav Kotesovec].
LINKS
FORMULA
E.g.f. satisfies: A(x) = exp( x*[A(x) + A(x)^2] ).
a(n) = Sum_{k=0..n} binomial(n,k)*(n+k+1)^(n-1) - Vladeta Jovovic, Mar 31 2008.
a(n) = A138860(n)*2^n.
E.g.f. satisfies: A( x/( exp(x) + exp(2*x) ) ) = exp(x).
a(n) ~ n^(n-1)*(1+r)^n*r^(n+1)/(sqrt(1+3*r)*(1-r)^(2*n+1)*exp(n)), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013
EXAMPLE
E.g.f. A(x) = 1 + 2x + 16x^2/2! + 248x^3/3! + 5824x^4/4! +...
MATHEMATICA
Table[Sum[Binomial[n, k]*(n+k+1)^(n-1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2013 *)
PROG
(PARI) {a(n) = local(A=1+x); for(i=0, n, A=exp(x*(A+A^2 +x*O(x^n) ))); n! * polcoeff(A, n) }
(PARI) {a(n) = sum(k=0, n, binomial(n, k)*(n+k+1)^(n-1))}
CROSSREFS
Cf. A138860.
Sequence in context: A188560 A012462 A012457 * A009833 A009044 A019318
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 29 2008
STATUS
approved