login
A010792
a(n) = n!*(n+3)! / 3!.
5
1, 4, 40, 720, 20160, 806400, 43545600, 3048192000, 268240896000, 28970016768000, 3766102179840000, 579979735695360000, 104396352425164800000, 21714441304434278400000, 5168037030455358259200000, 1395369998222946729984000000, 424192479459775805915136000000
OFFSET
0,2
FORMULA
From Amiram Eldar, Sep 27 2022: (Start)
Sum_{n>=0} 1/a(n) = 6*BesselI(3,2) = 6*A261879.
Sum_{n>=0} (-1)^n/a(n) = 6*BesselJ(3,2). (End)
a(n) = 1/([x^n] hypergeom([], [4], x)). - Peter Luschny, Sep 13 2024
MAPLE
f := n->n!*(n+3)!/3!;
MATHEMATICA
Table[n! (n + 3)! / 3!, {n, 0, 20}] (* Vincenzo Librandi, Feb 25 2017 *)
PROG
(Magma) [Factorial(n)*Factorial(n+3)/6: n in [0..20]]; // Vincenzo Librandi, Feb 25 2017
(PARI) a(n) = n!^2*binomial(n+3, 3) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Feb 25 2017
STATUS
approved