The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324669 a(n) is the least k>0 such that A001359(n)+k^2 is in A001359. 1
 6, 114, 162, 210, 24, 330, 6, 6, 18, 12, 30, 210, 6, 18, 120, 150, 330, 24, 6, 42, 30, 66, 96, 210, 180, 210, 42, 54, 60, 360, 6, 18, 630, 60, 210, 24, 30, 66, 24, 126, 30, 48, 1380, 24, 90, 102, 6, 30, 42, 18, 90, 90, 42, 54, 12, 36, 60, 186, 210, 12, 72, 24, 42, 24, 330, 60, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Offset is 2 because 3+k^2 is never in A001359. All terms are divisible by 6. The generalized Bunyakovsky conjecture implies that a(n) always exists, for n >= 2. a(n) = 6 if and only if A001359(n) is in A248367. LINKS Robert Israel, Table of n, a(n) for n = 2..10000 EXAMPLE a(3) = 114 because A001359(3)=11, 11+114^2=13007 is in A001359, and no smaller k works. MAPLE P:= select(isprime, {seq(i, i=3..10000, 2)}): TP:= sort(convert(P intersect map(`-`, P, 2), list)): f:= proc(p) local k; for k from 6 by 6 do if isprime(p + k^2) and isprime(p + k^2 + 2) then return k fi od end proc: map(f, TP[2..-1]); MATHEMATICA With[{s = Select[Prime@ Range[3, 332], PrimeQ[# + 2] &]}, Array[Block[{k = 1}, While[! AllTrue[s[[#]] + k^2 + {0, 2}, PrimeQ], k++]; k] &, Length@ s]] (* Michael De Vlieger, Sep 03 2019 *) CROSSREFS Cf. A001359, A248367. Sequence in context: A288561 A291917 A066931 * A051228 A194132 A194476 Adjacent sequences:  A324666 A324667 A324668 * A324670 A324671 A324672 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Sep 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 15:19 EDT 2021. Contains 345025 sequences. (Running on oeis4.)