login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248367
Initial members of prime quadruples (n, n+2, n+36, n+38).
2
5, 71, 101, 191, 311, 821, 1451, 4091, 4481, 4931, 5441, 6791, 12071, 13721, 14591, 17921, 18251, 20441, 20771, 20981, 21521, 21611, 35801, 38711, 41141, 41981, 43541, 46271, 47351, 47741, 48821, 49331, 53231, 64151, 70841
OFFSET
1,1
COMMENTS
This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+36,n+38).
This sequence is a subsequence of A001359 (lesser of twin primes).
Excluding 5, this sequence is a subsequence of A132232 (primes, 11 mod 30).
LINKS
Eric Weisstein's World of Mathematics, Prime Quadruplet.
Eric Weisstein's World of Mathematics, Twin Primes
Wikipedia, Twin prime
EXAMPLE
For n=71, the numbers 71, 73, 107, 109, are primes.
MATHEMATICA
a248367[n_] := Select[Prime@Range@n, And[PrimeQ[# + 2], PrimeQ[# + 36], PrimeQ[# + 38]] &]; a248367[8000] (* Michael De Vlieger, Jan 11 2015 *)
Select[Prime[Range[8000]], AllTrue[#+{2, 36, 38}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 17 2019 *)
PROG
(Python)
from sympy import isprime
for n in range(1, 10000001, 2):
..if isprime(n) and isprime(n+2) and isprime(n+36) and isprime(n+38): print(n, end=', ')
CROSSREFS
Cf. A077800 (twin primes), A001359, A132232, A181603 (twin primes, end 1).
Sequence in context: A338989 A101019 A056266 * A157860 A125242 A102976
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Jan 11 2015
STATUS
approved