login
A248366
Least positive integer m such that prime(m+n) - prime(m) divides m + n.
2
1, 1, 5, 10, 175, 22, 23, 34, 35, 102, 57, 54, 63, 70, 345, 74, 279, 198, 225, 124, 127, 294, 145, 130, 149, 334, 831, 164, 191, 720, 183, 520, 209, 486, 259, 990, 231, 226, 227, 268, 663, 294, 701, 326, 301, 308, 335, 310, 311, 790
OFFSET
1,3
COMMENTS
Conjecture: a(n) exists for any n > 0. Moreover, a(n) <= n^2 except for n = 5, 10, 15, 27.
See also A248369 for a similar conjecture.
EXAMPLE
a(5) = 175 since prime(175+5) - prime(175) = 1069 - 1039 = 30 divides 175 + 5 = 180.
MATHEMATICA
q[n_]:=q[n]=PartitionsQ[n]
Do[m=1; Label[aa]; If[Mod[m+n, Prime[m+n]-Prime[m]]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 50}]
PROG
(PARI)
a(n)=m=1; while((m+n)%(prime(m+n)-prime(m)), m++); m
vector(100, n, a(n)) \\ Derek Orr, Oct 05 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 05 2014
STATUS
approved