login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251702
a(1)=5, a(n) = a(n-1)*(a(n-1)-1)*(a(n-1)-2)/6.
5
5, 10, 120, 280840, 3691654113991480, 8385167839605753859676710992399730619003333960
OFFSET
1,1
COMMENTS
In general, sequence a(n) = binomial(a(n-1),k) is asymptotic to (k!)^(1/(k-1)) * c^(k^n), where the constant c is dependent on k and a(1). For big a(1), c asymptotically approaches (a(1)/(k!)^(1/(k-1)))^(1/k). - Vaclav Kotesovec, Dec 09 2014
LINKS
FORMULA
Limit_{n->oo} a(n)^(1/3^n) = 1.1546796279605837888382808629570944052320556413... (see A251792).
a(n) ~ sqrt(6) * A251792^(3^n). - Vaclav Kotesovec, Dec 09 2014
a(n) = binomial(a(n-1),3) for n >= 1. - Shel Kaphan, Feb 06 2023
EXAMPLE
a(2) = a(1)*(a(1)-1)*(a(1)-2)/6 = 5*4*3/6 = 10.
MATHEMATICA
RecurrenceTable[{a[1] == 5, a[n] == a[n - 1](a[n - 1] - 1)(a[n - 1] - 2)/6}, a[n], {n, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Dec 07 2014
STATUS
approved