The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251702 a(1)=5, a(n) = a(n-1)*(a(n-1)-1)*(a(n-1)-2)/6. 5
 5, 10, 120, 280840, 3691654113991480, 8385167839605753859676710992399730619003333960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In general, sequence a(n) = binomial(a(n-1),k) is asymptotic to (k!)^(1/(k-1)) * c^(k^n), where the constant c is dependent on k and a(1). For big a(1), c asymptotically approaches (a(1)/(k!)^(1/(k-1)))^(1/k). - Vaclav Kotesovec, Dec 09 2014 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..8 FORMULA Limit_{n->oo} a(n)^(1/3^n) = 1.1546796279605837888382808629570944052320556413... (see A251792). a(n) ~ sqrt(6) * A251792^(3^n). - Vaclav Kotesovec, Dec 09 2014 a(n) = binomial(a(n-1),3) for n >= 1. - Shel Kaphan, Feb 06 2023 EXAMPLE a(2) = a(1)*(a(1)-1)*(a(1)-2)/6 = 5*4*3/6 = 10. MATHEMATICA RecurrenceTable[{a[1] == 5, a[n] == a[n - 1](a[n - 1] - 1)(a[n - 1] - 2)/6}, a[n], {n, 10}] CROSSREFS Cf. A086714, A251792, A129440, A086714. Sequence in context: A119137 A048360 A357565 * A067958 A248366 A297908 Adjacent sequences: A251699 A251700 A251701 * A251703 A251704 A251705 KEYWORD nonn AUTHOR Frank M Jackson, Dec 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 05:47 EDT 2024. Contains 373432 sequences. (Running on oeis4.)