OFFSET
1,3
FORMULA
Equals lim_{n->infinity} A251702(n)^(1/3^n).
EXAMPLE
1.1546796279605837888382808629570944052320556413000593142798453022385779...
MATHEMATICA
exact = 20; terms = 200; b = ConstantArray[0, terms]; b[[1]] = N[Log[5], 100]; Do[b[[n]] = b[[n - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 2]] - Log[6], {n, 2, terms}]; Do[Print[Exp[b[[n]]/3^n]], {n, 1, Length[b]}] (* after Jon E. Schoenfield *)
PROG
(Magma) nMax:=160; nExactMax:=20; DP:=100; R:=RealField(DP); SetDefaultRealField(R); logA:=[Log(5.0)]; for n in [2..nMax] do logAprev:=logA[n-1]; if n le nExactMax then Aprev:=Exp(logAprev); logA[n]:=logAprev + Log(Aprev-1) + Log(Aprev-2) - Log(6); else logA[n]:=3*logAprev - Log(6); end if; t:=Exp((1/3^n)*logA[n]); n, ChangePrecision(t, 72); end for; // Jon E. Schoenfield, Dec 09 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec and Jon E. Schoenfield, Dec 09 2014
STATUS
approved