login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086714 a(1)=4, a(n)=a(n-1)*(a(n-1)-1)/2. 5
4, 6, 15, 105, 5460, 14903070, 111050740260915, 6166133456248548335768188155, 19010600900133834176644234577571914951562754277857057935 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The next two terms, a(10) and a(11), have 111 and 221 digits. - Harvey P. Dale, Jun 10 2011

Interpretation through plane geometry: Start with the a(n)-sided equilateral figure, connect all the vertices to create a figure having a(n+1) edges. Repeat to obtain this sequence. - T. D. Noe, May 13 2016

Let y(1) = x1+x2+x3+x4, and define y(n+1) as the plethysm e2[y(n)], where e2 represents the second elementary symmetric function. Then a(n) is y(n) evaluated at x1=x2=x3=x4=1. - Per W. Alexandersson, Jun 06 2020

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..13

FORMULA

Limit n->infinity a(n)^(1/2^n) = 1.280497808541657066685323460209089278782... (see A251794). - Vaclav Kotesovec, Feb 15 2014, updated Dec 09 2014

a(n) ~ 2 * A251794^(2^n). - Vaclav Kotesovec, Dec 09 2014

EXAMPLE

a(2) = a(1)*(a(1)-1)/2 = 4*3/2 = 6.

MATHEMATICA

RecurrenceTable[{a[1]==4, a[n]==(a[n-1](a[n-1]-1))/2}, a[n], {n, 10}] (* Harvey P. Dale, Jun 10 2011 *)

PROG

(PARI) v=vector(10, i, (i==1)*4); for(i=2, 10, v[i]=v[i-1]*(v[i-1]-1)/2); v

CROSSREFS

Cf. A251702, A251794, A006893.

Cf. A007501, A013589, A050542, A050548, A050536, A050909.

Sequence in context: A064910 A305580 A191311 * A239323 A009463 A066260

Adjacent sequences:  A086711 A086712 A086713 * A086715 A086716 A086717

KEYWORD

nonn

AUTHOR

Jon Perry, Jul 29 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 16:45 EDT 2020. Contains 337344 sequences. (Running on oeis4.)