OFFSET
1,2
COMMENTS
In the triangle the first partition with m parts appears as the last partition in row A000217(m), m >= 1. - Omar E. Pol, Mar 23 2022
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10350 (rows 1..500 of triangle, flattened)
FORMULA
T(2^m,1) = 2^m, for m >= 0. - Paolo Xausa, Jun 19 2022
EXAMPLE
Triangle begins:
[1];
[2];
[3], [2, 1];
[4];
[5], [3, 2];
[6], [3, 2, 1];
[7], [4, 3];
[8];
[9], [5, 4], [4, 3, 2];
[10], [4, 3, 2, 1];
[11], [6, 5];
[12], [5, 4, 3];
[13], [7, 6];
[14], [5, 4, 3, 2];
[15], [8, 7], [6, 5, 4], [5, 4, 3, 2, 1];
[16];
[17], [9, 8];
[18], [7, 6, 5], [6, 5, 4, 3];
[19], [10, 9];
[20], [6, 5, 4, 3, 2];
[21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1];
[22], [7, 6, 5, 4];
[23], [12, 11];
[24], [9, 8, 7];
[25], [13, 12], [7, 6, 5, 4, 3];
[26], [8, 7, 6, 5];
[27], [14, 13], [10, 9, 8], [7, 6, 5, 4, 3, 2];
[28], [7, 6, 5, 4, 3, 2, 1];
...
Note that in the below diagram the number of horizontal line segments in the n-th row equals A001227(n), the number of partitions of n into consecutive parts, so we can find the partitions of n into consecutive parts as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1], equaling the 15th row of the above triangle.
. _
. _|1|
. _|2 _|
. _|3 |2|
. _|4 _|1|
. _|5 |3 _|
. _|6 _|2|3|
. _|7 |4 |2|
. _|8 _|3 _|1|
. _|9 |5 |4 _|
. _|10 _|4 |3|4|
. _|11 |6 _|2|3|
. _|12 _|5 |5 |2|
. _|13 |7 |4 _|1|
. _|14 _|6 _|3|5 _|
. _|15 |8 |6 |4|5|
. _|16 _|7 |5 |3|4|
. _|17 |9 _|4 _|2|3|
. _|18 _|8 |7 |6 |2|
. _|19 |10 |6 |5 _|1|
. _|20 _|9 _|5 |4|6 _|
. _|21 |11 |8 _|3|5|6|
. _|22 _|10 |7 |7 |4|5|
. _|23 |12 _|6 |6 |3|4|
. _|24 _|11 |9 |5 _|2|3|
. _|25 |13 |8 _|4|7 |2|
. _|26 _|12 _|7 |8 |6 _|1|
. _|27 |14 |10 |7 |5|7 _|
. |28 |13 |9 |6 |4|6|7|
...
The diagram is infinite. For more information about the diagram see A286000.
MATHEMATICA
intervals[n_]:=Module[{x, y}, SolveValues[(x^2-y^2+x+y)/2==n&&0<x<=n&&0<y<=n, {x, y}, Integers]];
A299765row[n_]:=Flatten[SortBy[Map[Range[First[#], Last[#], -1]&, intervals[n]], Length]];
nrows=25; Array[A299765row, nrows] (* Paolo Xausa, Jun 19 2022 *)
PROG
(PARI) iscons(p) = my(v = vector(#p-1, k, p[k+1] - p[k])); v == vector(#p-1, i, 1);
row(n) = my(list = List()); forpart(p=n, if (iscons(p), listput(list, Vecrev(p))); ); Vec(list); \\ Michel Marcus, May 11 2022
CROSSREFS
Row n has length A204217(n).
Row sums give A245579.
Right border gives A118235.
Column 1 gives A000027.
Records give A000027.
The number of partitions into consecutive parts in row n is A001227(n).
Cf. A328365 (mirror).
Cf. A352425 (a subsequence).
KEYWORD
AUTHOR
Omar E. Pol, Feb 26 2018
EXTENSIONS
Name clarified by Omar E. Pol, May 11 2022
STATUS
approved