OFFSET
1,3
COMMENTS
FORMULA
sigma(T(n,k)) = n, if T(n,k) >= 1.
EXAMPLE
First 24 rows of triangle T(n,k):
-----------------------
. n / k: 1 2 3 ...
-----------------------
| 1| 1;
| 2| 0;
| 3| 2;
| 4| 3;
| 5| 0;
| 6| 5;
| 7| 4;
| 8| 7;
| 9| 0;
|10| 0;
|11| 0;
|12| 6, 11;
|13| 9;
|14| 13;
|15| 8;
|16| 0;
|17| 0;
|18| 10, 17;
|19| 0;
|20| 19;
|21| 0;
|22| 0;
|23| 0;
|24| 14, 15, 23;
...
For n = 23 there are no positive integers whose sum of divisors is 23, so T(23, 1) = 0, which is the only element in the 23rd row of the triangle.
For n = 24 there are three positive integers whose sum of divisors is 24; they are 14, 15 and 23, since sigma(14) = 1 + 2 + 7 + 14 = 24, sigma(15) = 1 + 3 + 5 + 15 = 24 and sigma(23) = 1 + 23 = 24, so the 24th row of the triangle is [14, 15, 23].
MATHEMATICA
With[{nn = 74}, ReplacePart[ConstantArray[{0}, nn], PositionIndex@ Array[DivisorSigma[1, #] &, nn]]] // Flatten (* Michael De Vlieger, Mar 16 2018 *)
CROSSREFS
Row sums give A258913.
Column 1 gives A051444.
Right border gives A057637.
Positive terms give A085790.
Row n has A054973(n) positive integers.
Positive terms in the first column give A002192.
Indices of the rows that contain a zero give A007369.
Indices of the rows that contain positive terms give A002191.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Mar 12 2018
STATUS
approved