OFFSET
1,2
COMMENTS
Right border of A299765. - Omar E. Pol, Jul 24 2018
In other words: a(n) is smallest part of the partitions of n into consecutive parts. - Omar E. Pol, Mar 12 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from Paul D. Hanna)
FORMULA
a(m) = 1 iff m = k*(k+1)/2: a(A000217(n)) = 1.
a(A002817(n-1)+1) = n; i.e., a(m) = n if m = k*(k-1)/2 + 1 and k = n*(n-1)/2 + 1. - Paul D. Hanna, Oct 28 2011
a(m) = 2 iff m = k*(k+3)/2: a(A000096(n)) = 2. - Bernard Schott, Mar 12 2019
EXAMPLE
a(3)=1 since 3 = 1+2; a(5)=2 since 5 = 2+3; a(6)=1 since 6 = 1+2+3; etc.
MAPLE
a:= proc(n) local j, k, s; j, k, s:= 1$3;
while s<>n do
if s<n then k:= k+1; s:= s+k
else s:= s-j; j:= j+1 fi
od: j
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 05 2018
MATHEMATICA
a[n_] := Module[{j = 1, k = 1, s = 1}, While[True, If[s == n, Break[]]; If[s < n, k = k+1; s = s+k, s = s-j; j = j+1]]; j];
Array[a, 100] (* Jean-François Alcover, Mar 12 2019, after Alois P. Heinz *)
PROG
(PARI) {a(n)=local(A=n); for(j=1, n, for(k=j, n+1, if(n==k*(k-1)/2-j*(j-1)/2, A=j; k=j=2*n+1))); A} /* Paul D. Hanna, Oct 28 2011 */
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Apr 18 2006
STATUS
approved