login
A118235
Smallest positive number starting an interval of consecutive integers with element sum n.
14
1, 2, 1, 4, 2, 1, 3, 8, 2, 1, 5, 3, 6, 2, 1, 16, 8, 3, 9, 2, 1, 4, 11, 7, 3, 5, 2, 1, 14, 4, 15, 32, 3, 7, 2, 1, 18, 8, 4, 6, 20, 3, 21, 2, 1, 10, 23, 15, 4, 8, 6, 3, 26, 2, 1, 5, 7, 13, 29, 4, 30, 14, 3, 64, 2, 1, 33, 5, 9, 7, 35, 4, 36, 17, 3, 6, 2, 1, 39, 14, 5, 19, 41, 7, 4, 20, 12, 3, 44, 2, 1, 8
OFFSET
1,2
COMMENTS
Right border of A299765. - Omar E. Pol, Jul 24 2018
In other words: a(n) is smallest part of the partitions of n into consecutive parts. - Omar E. Pol, Mar 12 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from Paul D. Hanna)
FORMULA
A109814(n) * (A109814(n) + 2*a(n) - 1) / 2 = n.
a(m) = n iff m = 2^k: a(A000079(n)) = A000079(n);
a(m) = 1 iff m = k*(k+1)/2: a(A000217(n)) = 1.
a(A002817(n-1)+1) = n; i.e., a(m) = n if m = k*(k-1)/2 + 1 and k = n*(n-1)/2 + 1. - Paul D. Hanna, Oct 28 2011
a(m) = 2 iff m = k*(k+3)/2: a(A000096(n)) = 2. - Bernard Schott, Mar 12 2019
EXAMPLE
a(3)=1 since 3 = 1+2; a(5)=2 since 5 = 2+3; a(6)=1 since 6 = 1+2+3; etc.
MAPLE
a:= proc(n) local j, k, s; j, k, s:= 1$3;
while s<>n do
if s<n then k:= k+1; s:= s+k
else s:= s-j; j:= j+1 fi
od: j
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 05 2018
MATHEMATICA
a[n_] := Module[{j = 1, k = 1, s = 1}, While[True, If[s == n, Break[]]; If[s < n, k = k+1; s = s+k, s = s-j; j = j+1]]; j];
Array[a, 100] (* Jean-François Alcover, Mar 12 2019, after Alois P. Heinz *)
PROG
(PARI) {a(n)=local(A=n); for(j=1, n, for(k=j, n+1, if(n==k*(k-1)/2-j*(j-1)/2, A=j; k=j=2*n+1))); A} /* Paul D. Hanna, Oct 28 2011 */
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Apr 18 2006
STATUS
approved