login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118235 Smallest positive number starting an interval of consecutive integers with element sum n. 11
1, 2, 1, 4, 2, 1, 3, 8, 2, 1, 5, 3, 6, 2, 1, 16, 8, 3, 9, 2, 1, 4, 11, 7, 3, 5, 2, 1, 14, 4, 15, 32, 3, 7, 2, 1, 18, 8, 4, 6, 20, 3, 21, 2, 1, 10, 23, 15, 4, 8, 6, 3, 26, 2, 1, 5, 7, 13, 29, 4, 30, 14, 3, 64, 2, 1, 33, 5, 9, 7, 35, 4, 36, 17, 3, 6, 2, 1, 39, 14, 5, 19, 41, 7, 4, 20, 12, 3, 44, 2, 1, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Right border of A299765. - Omar E. Pol, Jul 24 2018

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from Paul D. Hanna)

FORMULA

A109814(n) * (A109814(n) + 2*a(n) - 1) / 2 = n.

a(m) = n iff m = 2^k: a(A000079(n)) = A000079(n);

a(m) = 1 iff m = k*(k+1)/2: a(A000217(n)) = 1.

a(A002817(n-1)+1) = n; i.e., a(m) = n if m = k*(k-1)/2 + 1 and k = n*(n-1)/2 + 1. - Paul D. Hanna, Oct 28 2011

EXAMPLE

a(3)=1 since 3 = 1+2; a(5)=2 since 5 = 2+3; a(6)=1 since 6 = 1+2+3; etc.

MAPLE

a:= proc(n) local j, k, s; j, k, s:= 1$3;

      do if s=n then break fi;

         if s<n then k:= k+1; s:= s+k

                else s:= s-j; j:= j+1 fi

      od: j

    end:

seq(a(n), n=1..100);  # Alois P. Heinz, Aug 05 2018

PROG

(PARI) {a(n)=local(A=n); for(j=1, n, for(k=j, n+1, if(n==k*(k-1)/2-j*(j-1)/2, A=j; k=j=2*n+1))); A} /* Paul D. Hanna, Oct 28 2011 */

CROSSREFS

Cf. A000079, A000217, A001227, A002817, A104512, A109814, A212652, A299765.

Sequence in context: A243070 A243060 A286321 * A304624 A083653 A278290

Adjacent sequences:  A118232 A118233 A118234 * A118236 A118237 A118238

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Apr 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 08:03 EDT 2018. Contains 316259 sequences. (Running on oeis4.)