login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245788
n times the number of 1's in the binary expansion of n.
6
0, 1, 2, 6, 4, 10, 12, 21, 8, 18, 20, 33, 24, 39, 42, 60, 16, 34, 36, 57, 40, 63, 66, 92, 48, 75, 78, 108, 84, 116, 120, 155, 32, 66, 68, 105, 72, 111, 114, 156, 80, 123, 126, 172, 132, 180, 184, 235, 96, 147, 150, 204, 156, 212, 216, 275, 168, 228, 232, 295, 240
OFFSET
0,3
LINKS
Project Euler, Problem 759, sequence f(n).
FORMULA
a(2*n) = 2*a(n).
a(2*n+1) = 2*n + 1 + (2+1/n)*a(n). - Robert Israel, Aug 01 2014
G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x6 + 21*x^7 + 8*x^8 + 18*x^9 + ...
MAPLE
a:= n -> n * convert(convert(n, base, 2), `+`):
seq(a(n), n=0..100); # Robert Israel, Aug 01 2014
MATHEMATICA
Table[n*DigitCount[n, 2, 1], {n, 0, 100}] (* Harvey P. Dale, Dec 16 2014 *)
PROG
(PARI) sumbit(n) = my(r); while(n>0, r+=n%2; n\=2); r
a(n) = n*sumbit(n)
(PARI) {a(n) = if( n<0, 0, n * sumdigits(n, 2))}; /* Michael Somos, Aug 05 2014 */ /* since version 2.6.0 */
(Python) [n*bin(n)[2:].count('1') for n in range(1000)] # Chai Wah Wu, Aug 03 2014
CROSSREFS
Cf. A000120 (number of 1's), A057147 (decimal version).
Sequence in context: A264647 A094748 A245579 * A065879 A065880 A335063
KEYWORD
nonn,base
AUTHOR
STATUS
approved