login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245785
Denominator of (n/tau(n) + sigma(n)/n)
4
1, 2, 6, 12, 10, 2, 14, 8, 9, 10, 22, 3, 26, 14, 20, 80, 34, 6, 38, 30, 84, 22, 46, 2, 75, 26, 108, 3, 58, 20, 62, 96, 44, 34, 140, 36, 74, 38, 156, 4, 82, 28, 86, 33, 30, 46, 94, 60, 147, 150, 68, 78, 106, 36, 220, 7, 228, 58, 118, 5, 122, 62, 126, 448, 260
OFFSET
1,2
COMMENTS
Denominator of (n/A000005(n) + A000203(n)/n).
See A245784 - numerator of (n/tau(n) + sigma(n)/n).
A245784(n) / a(n) = integer for numbers n in A245786; a(n) = 1.
First deviation from A245777 (denominator of (n/tau(n) - sigma(n)/n)) is at a(300); a(300) = 25, A245777(300) = 75. Sequence of numbers n such that A245777(n) is not equal to a(n): 300, 768, 1452, 1764, 2100, 3468, 3900, 5376, 5700, 6084, 6348, 9075, 9300, ... See (Magma) [n: n in [1..10000] | (Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n))) - (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) ne 0]
LINKS
EXAMPLE
For n = 9; a(9) = denominator(9/tau(9) + sigma(9)/9) = denominator(9/3 + 13/9) = denominator(40/9) = 9.
PROG
(Magma) [Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n)): n in [1..1000]]
(PARI) for(n=1, 100, s=n/numdiv(n); t=sigma(n)/n; print1(denominator(s+t), ", ")) \\ Derek Orr, Aug 15 2014
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Aug 15 2014
STATUS
approved