login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140472
a(n) = a(n - a(n-1)) + a(floor(n/2)).
6
0, 1, 2, 2, 4, 3, 4, 4, 8, 5, 6, 6, 8, 7, 8, 8, 16, 9, 10, 10, 12, 11, 12, 12, 16, 13, 14, 14, 16, 15, 16, 16, 32, 17, 18, 18, 20, 19, 20, 20, 24, 21, 22, 22, 24, 23, 24, 24, 32, 25, 26, 26, 28, 27, 28, 28, 32, 29, 30, 30, 32, 31, 32, 32, 64, 33, 34, 34, 36, 35, 36, 36, 40, 37, 38
OFFSET
0,3
COMMENTS
From M. F. Hasler, Oct 20 2019: (Start)
The sequence A285326/2 is characterized by a(2n) = 2*a(n) (n >= 0) and a(2n-1) = n (n >= 1). This implies the property defining this sequence: If n = 2k, then n - a(n-1) = 2k - a(2k-1) = 2k - k = k, so a(n - a(n-1)) + a(floor(n/2)) = a(k) + a(k) = 2*a(k) = a(2k) = a(n). If n = 2k-1, then n - a(n-1) = 2k-1 - a(2k-2) = 2k-1 - 2*a(k-1), whence a(n - a(n-1)) + a(floor(n/2)) = a(2(k - a(k-1)) - 1) + a(k-1) = k - a(k-1) + a(k-1) = k = a(2k-1) = a(n). Thus, A285326/2 satisfies the definition of this sequence.
The sequence is equal to itself multiplied by 2 and interleaved with the positive integers. (This is equivalent to the above characterization.)
The sequence repeats the pattern [A, B, C, C] where in the n-th occurrence C = 2n, B = C - 1, A = C if n is even, A = C + 2 if n == 3 (mod 4), and A = 16*a((n-1)/4) otherwise. This yields a simpler formula for all terms except for indices which are multiples of 16. (End)
LINKS
FORMULA
a(0) = 0; a(1) = a(2) = 1; a(n) = a(n - a(n-1)) + a(floor(n/2)).
a(n) = (n+A006519(n))/2 for n > 0 (conjectured). - Jon Maiga, Aug 16 2019
a(n) = A285326(n)/2, equivalent to the above: see comments for the proof. - M. F. Hasler, Oct 19 2019
MATHEMATICA
a[0] = 0; a[1] = 1;
a[n_] := a[n] = a[n - a[n - 1]] + a[Floor[n/2]];
Table[a[n], {n, 0, 200}]
PROG
(Haskell)
a140472 n = a140472_list !! n
a140472_list = 0 : 1 : h 2 1 where
h x y = z : h (x + 1) z where z = a140472 (x - y) + a140472 (x `div` 2)
-- Reinhard Zumkeller, Jul 20 2012
(Magma) I:=[1, 2]; [0] cat [n le 2 select I[n] else Self(n-Self(n-1))+Self(Floor((n) div 2)):n in [1..75]]; // Marius A. Burtea, Aug 16 2019
(PARI) a(n)=(n+bitand(n, -n))\2 \\ M. F. Hasler, Oct 19 2019
CROSSREFS
Cf. A214546 (first differences).
Same as A109168, if a(0) = 0 is omitted. - M. F. Hasler, Oct 19 2019
Sequence in context: A117484 A086835 A046701 * A109168 A015134 A171580
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Jul 20 2012
STATUS
approved