login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243972
Least number k such that 2^k contains exactly n identical digits.
3
1, 16, 22, 23, 53, 70, 74, 93, 122, 147, 156, 167, 168, 222, 214, 221, 283, 315, 311, 312, 313, 314, 426, 466, 427, 474, 439, 563, 630, 576, 554, 575, 626, 627, 793, 722, 809, 766, 861, 889, 925, 893, 989, 890, 1077, 891, 983, 892, 1130, 1128, 1135, 1134, 1217, 1129, 1238
OFFSET
1,2
COMMENTS
The terms are not all unique: thus a(491) = a(497) = 14705. - Robert Israel, May 26 2017
EXAMPLE
2**22 = 4194304 contains exactly 3 of the same digit (4). Since 22 is the smallest power of 2 to have this, a(3) = 22.
MAPLE
N:= 100: # To get a(1)..a(N)
Agenda:= {$1..N}:
for n from 1 while nops(Agenda) > 0 do
S:= convert(2^n, base, 10);
V:= Vector(10);
for s in S do V[s+1]:= V[s+1]+1 od:
T:= convert(V, set) intersect Agenda;
for t in T do A[t]:= n od:
Agenda:= Agenda minus T;
od:
seq(A[i], i=1..N); # Robert Israel, May 26 2017
PROG
(Python)
def b():
..n = 1
..k = 1
..while k < 50000:
....st = str(2**k)
....if len(st) >= n:
......for a in range(10):
........count = 0
........for i in range(len(st)):
..........if st[i] == str(a):
............count += 1
........if count == n:
..........print(k, end=', ')
..........n += 1
..........k = 0
..........break
......k += 1
....else:
......k += 1
b()
CROSSREFS
Sequence in context: A123662 A065778 A305944 * A091118 A294125 A360735
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jun 16 2014
STATUS
approved