login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144615
a(n) = A000203(3n+2).
3
3, 6, 15, 12, 24, 18, 42, 24, 42, 30, 63, 48, 60, 42, 84, 48, 93, 54, 120, 60, 96, 84, 126, 72, 114, 96, 186, 84, 132, 90, 168, 120, 171, 102, 210, 108, 216, 114, 210, 144, 186, 156, 255, 132, 204, 138, 336, 168, 222, 150, 300, 192, 240, 192, 294, 168, 324, 174, 372, 180, 336
OFFSET
0,1
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of q^(-2/3) * c(q)^2 / 3 in powers of q where c() is a cubic AGM theta function. - Michael Somos, Jun 07 2012
Expansion of q^(-2/3) * 3 * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Jun 07 2012
a(n) = A000203(A016789(n)). - Michel Marcus, Jul 14 2015
a(n) = 3*A033686(n). - Robert G. Wilson v, Jan 12 2018
Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
EXAMPLE
G.f. = 3 + 6*x + 15*x^2 + 12*x^3 + 24*x^4 + 18*x^5 + 42*x^6 + 24*x^7 + 42*x^8 + ...
G.f. = 3*q^2 + 6*q^5 + 15*q^8 + 12*q^11 + 24*q^14 + 18*q^17 + 42*q^20 + 24*q^23 + ...
MAPLE
with(numtheory):
seq(sigma(3*n+2), n=0..10^3); # Muniru A Asiru, Dec 29 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 3 n + 2]]; (* Michael Somos, Jul 14 2015 *)
a[ n_] := SeriesCoefficient[ 3 (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, Jul 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Jun 07 2012 */
(PARI) a(n)=sigma(3*n+2); \\ Michel Marcus, Jul 14 2015
(GAP) sequence := List([0..10^4], n->Sigma(3*n+2)); # Muniru A Asiru, Dec 29 2017
(Magma) [SumOfDivisors(3*n+2): n in [0..70]]; // Vincenzo Librandi, Jan 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2009
STATUS
approved