OFFSET
0,1
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..10000
FORMULA
Expansion of q^(-2/3) * c(q)^2 / 3 in powers of q where c() is a cubic AGM theta function. - Michael Somos, Jun 07 2012
Expansion of q^(-2/3) * 3 * (eta(q^3)^3 / eta(q))^2 in powers of q. - Michael Somos, Jun 07 2012
a(n) = 3*A033686(n). - Robert G. Wilson v, Jan 12 2018
Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022
EXAMPLE
G.f. = 3 + 6*x + 15*x^2 + 12*x^3 + 24*x^4 + 18*x^5 + 42*x^6 + 24*x^7 + 42*x^8 + ...
G.f. = 3*q^2 + 6*q^5 + 15*q^8 + 12*q^11 + 24*q^14 + 18*q^17 + 42*q^20 + 24*q^23 + ...
MAPLE
with(numtheory):
seq(sigma(3*n+2), n=0..10^3); # Muniru A Asiru, Dec 29 2017
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 3 n + 2]]; (* Michael Somos, Jul 14 2015 *)
a[ n_] := SeriesCoefficient[ 3 (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, Jul 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* Michael Somos, Jun 07 2012 */
(PARI) a(n)=sigma(3*n+2); \\ Michel Marcus, Jul 14 2015
(GAP) sequence := List([0..10^4], n->Sigma(3*n+2)); # Muniru A Asiru, Dec 29 2017
(Magma) [SumOfDivisors(3*n+2): n in [0..70]]; // Vincenzo Librandi, Jan 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2009
STATUS
approved