login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144612
Sturmian word of slope (3-sqrt(3))/2.
1
1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1
OFFSET
1,1
COMMENTS
Since 1 - (3-sqrt(3))/2 has a periodic continued fraction expansion with period 21, (a(n)) is the unique fixed point of the morphism 0 -> 10110, 1 -> 101. - Michel Dekking, Feb 05 2017
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 286.
LINKS
FORMULA
a(n) = floor((n+1)r) - floor(nr), where r = (3-sqrt(3))/2.
MATHEMATICA
Table[(Floor[(n + 1) (3 - Sqrt[3])/2] - Floor[n (3 - Sqrt[3])/2]), {n, 100}] (* Vincenzo Librandi, Feb 05 2017 *)
PROG
(Magma) [Floor((n+1)*(3-Sqrt(3))/2)-Floor(n*(3-Sqrt(3))/2): n in [1..100]]; // Vincenzo Librandi, Feb 05 2017
CROSSREFS
Cf. A188082.
Sequence in context: A266786 A272532 A166946 * A174208 A141687 A305385
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 13 2009
EXTENSIONS
Corrected and extended by Michel Dekking, Feb 05 2017
STATUS
approved