The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144611 Sturmian word of slope 2-sqrt(2). 1
 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Old name was: Sturmian word of slope 2. Conjecture: a(n) = floor((n+1)*log(3)/log(2)) - floor(n*log(3)/log(2)) - 1. This is not true: Let b(n) = floor((n+1)*log(3)/log(2)) - floor(n*log(3)/log(2)) - 1. Then b(40) = 0, whereas a(40) = 1. This is the first term at which a(n) and b(n) disagree. - Danny Rorabaugh, Mar 14 2015 From Benoit Cloitre, Oct 16 2016: (Start) Let u(n) = n + floor(sqrt(2)*n) (A003151) and v(n) = n + floor(n/sqrt(2)) (A003152) then u,v form a partition of the positive integers and we have, for n >= 1, a(u(n))=0 and a(v(n))=1. Another way to construct the sequence: merge the sequences x(n) = 2n^2+1 and y(n) = 4n^2 (n >= 1) into an increasing sequence z(n) which then begins: 3,4,9,16,19,33,36,51,64,73 (not in the OEIS). Then for n >= 1, a(n) = z(n) mod 2. (End) From Michel Dekking, Feb 16 2020: (Start) This sequence is a Sturmian sequence s(alpha,rho) with slope alpha = 2-sqrt(2), and intercept rho = 0. In general, one passes from slope alpha to slope 1-alpha by exchanging 0 and 1. It therefore follows from the Comments of A006337 that (a(n+1)) is the unique fixed point of the morphism 0 -> 101, 1 -> 10. (End) LINKS Danny Rorabaugh, Table of n, a(n) for n = 0..10000 M. Lothaire, Algebraic combinatorics on words, Cambridge University Press. Online publication date: April 2013; Print publication year: 2002. Mike Winkler, On the structure and the behaviour of Collatz 3n+ 1 sequences, arXiv:1412.0519 [math.GM], 2014. FORMULA a(n) = floor((n+1)*alpha) - floor(n*alpha), where alpha = 2-sqrt(2). - Michel Dekking, Feb 16 2020 MATHEMATICA christoffel[s_, M_] := Module[{n, x = 1, y = 0, ans = {0}}, Do[If[y + 1 <= s*x, AppendTo[ans, 1]; y++, AppendTo[ans, 0]; x++], {n, 1, M}]; ans] (* or Sturmian word, Jean-François Alcover, Sep 19 2016, A274170 *); christoffel[Sqrt, 105] (* Robert G. Wilson v, Feb 02 2017 *) PROG (Sage) #Generate the first n terms (plus a few) of the Sturmian word of slope a def Sturmian(a, n): y = 0 A = [] while len(A)<=n: y += a A.extend(+*(floor(y)-floor(y-a))) return A Sturmian(sqrt(2), 104) # Danny Rorabaugh, Mar 14 2015 (PARI) \\ to get N terms a(n)=if(n<1, 0, vecsort(concat(vector(floor(sqrt(2)*N), i, 2*i^2+1), vector(N, j, 4*j^2)))[n]%2) \\ Benoit Cloitre, Oct 16 2016 CROSSREFS See A144595 for further details. Cf. A006337. Sequence in context: A288640 A082446 A191156 * A288473 A130853 A353810 Adjacent sequences: A144608 A144609 A144610 * A144612 A144613 A144614 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 13 2009 EXTENSIONS Name corrected by Michel Dekking, Feb 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 17:34 EST 2023. Contains 360110 sequences. (Running on oeis4.)