login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105802
Smallest m such that the m-th Fibonacci number has exactly n divisors that are also Fibonacci numbers.
3
1, 3, 6, 15, 12, 45, 24, 36, 48, 405, 60, 315, 192, 144, 120, 945, 180, 1575, 240, 576, 3072, 295245, 360, 1296, 12288, 900, 960, 25515, 720, 14175, 840, 9216, 196608, 5184, 1260, 17325, 786432, 36864, 1680, 31185, 2880, 127575, 15360, 3600, 99225
OFFSET
1,2
COMMENTS
A076985(n) = A000045(a(n)); A076984(a(n)) = n.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Number
FORMULA
Conjecture: a(2k+1) = 3*2^(Prime[k-1]-1) for k>3. It appears that a(2k+1) = 3*2^k for k = {1,2,3,4,6,10,12,16,18,...} = A068499[n] Numbers n such that n! reduced modulo (n+1) is not zero. - Alexander Adamchuk, Sep 15 2006
EXAMPLE
n=6: a(6) = 45, A076985(6) = A000045(45) = 1134903170,
A076984(45) = #{1,2,5,34,109441,1134903170} = #{fib(1),fib(2),fib(5),fib(9),fib(21),fib(45)} = 6.
MATHEMATICA
t=Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 1000000}]; lst={}; n=1; While[pos=Flatten[Position[t, n, 1, 1]]; Length[pos]>0, AppendTo[lst, pos[[1]]]; n++ ]; lst (Noe)
CROSSREFS
Cf. A068499.
Sequence in context: A261955 A144615 A088698 * A285844 A285948 A285835
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 20 2005
EXTENSIONS
More terms from T. D. Noe, Jan 18 2006
STATUS
approved