OFFSET
1,3
COMMENTS
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Fibonacci Number
FORMULA
a(n) = tau(n) - [n is even] = A000005(n) - A059841(n). Proof: gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)) and Fib(2) = 1. - Olivier Wittenberg, following a conjecture of Ralf Stephan, Sep 28 2004
The number of divisors of n excluding 2.
a(3*2^(Prime(n-1)-1)) = 2n + 1 for n > 3. a(3*2^A068499[n]) = 2n + 1, where A068499(n) = {1,2,3,4,6,10,12,16,18,...}. - Alexander Adamchuk, Sep 15 2006
EXAMPLE
n=12, A000045(12)=144: 5 of the 15 divisors of 144 are also Fibonacci numbers, a(12) = #{1, 2, 3, 8, 144} = 5.
MAPLE
with(combinat, fibonacci):a[1] := 1:for i from 2 to 229 do s := 0:for j from 2 to i do if((fibonacci(i) mod fibonacci(j))=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l], l=2..229);
MATHEMATICA
Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 100}] (Noe)
PROG
(PARI) {a(n)=if(n<1, 0, numdiv(n)+n%2-1)} /* Michael Somos, Sep 03 2006 */
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, d!=2))} /* Michael Somos, Sep 03 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 25 2002
EXTENSIONS
Corrected and extended by Sascha Kurz, Jan 26 2003
Edited by N. J. A. Sloane, Sep 14 2006. Some of the comments and formulas may need to be adjusted to reflect the new offset.
STATUS
approved