login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A000203(3n+2).
3

%I #30 Dec 17 2022 02:16:21

%S 3,6,15,12,24,18,42,24,42,30,63,48,60,42,84,48,93,54,120,60,96,84,126,

%T 72,114,96,186,84,132,90,168,120,171,102,210,108,216,114,210,144,186,

%U 156,255,132,204,138,336,168,222,150,300,192,240,192,294,168,324,174,372,180,336

%N a(n) = A000203(3n+2).

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H Muniru A Asiru, <a href="/A144615/b144615.txt">Table of n, a(n) for n = 0..10000</a>

%F Expansion of q^(-2/3) * c(q)^2 / 3 in powers of q where c() is a cubic AGM theta function. - _Michael Somos_, Jun 07 2012

%F Expansion of q^(-2/3) * 3 * (eta(q^3)^3 / eta(q))^2 in powers of q. - _Michael Somos_, Jun 07 2012

%F a(n) = A000203(A016789(n)). - _Michel Marcus_, Jul 14 2015

%F a(n) = 3*A033686(n). - _Robert G. Wilson v_, Jan 12 2018

%F Sum_{k=1..n} a(k) = (2*Pi^2/9) * n^2 + O(n*log(n)). - _Amiram Eldar_, Dec 16 2022

%e G.f. = 3 + 6*x + 15*x^2 + 12*x^3 + 24*x^4 + 18*x^5 + 42*x^6 + 24*x^7 + 42*x^8 + ...

%e G.f. = 3*q^2 + 6*q^5 + 15*q^8 + 12*q^11 + 24*q^14 + 18*q^17 + 42*q^20 + 24*q^23 + ...

%p with(numtheory):

%p seq(sigma(3*n+2), n=0..10^3); # _Muniru A Asiru_, Dec 29 2017

%t a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 3 n + 2]]; (* _Michael Somos_, Jul 14 2015 *)

%t a[ n_] := SeriesCoefficient[ 3 (QPochhammer[ x^3]^3 / QPochhammer[ x])^2, {x, 0, n}]; (* _Michael Somos_, Jul 14 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * (eta(x^3 + A)^3 / eta(x + A))^2, n))}; /* _Michael Somos_, Jun 07 2012 */

%o (PARI) a(n)=sigma(3*n+2); \\ _Michel Marcus_, Jul 14 2015

%o (GAP) sequence := List([0..10^4],n->Sigma(3*n+2)); # _Muniru A Asiru_, Dec 29 2017

%o (Magma) [SumOfDivisors(3*n+2): n in [0..70]]; // _Vincenzo Librandi_, Jan 19 2018

%Y Cf. A000203, A016789, A033686.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jan 15 2009