OFFSET
1,7
COMMENTS
Row lengths are 1,1,1,2,2,3,3,4,4,5,5,6,6,...
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1226 (first 70 rows)
N. J. A. Sloane, Transforms
FORMULA
G.f. satisfies A(x,y) = x*y + x*WEIGH(A(x,y)) - x. Shifts up under WEIGH transform.
EXAMPLE
Triangle begins:
1;
1;
1;
1, 1;
1, 2;
1, 4, 1;
1, 6, 5;
1, 9, 13, 2;
1, 12, 28, 11;
1, 16, 53, 40, 3;
...
From Joerg Arndt, Aug 18 2014: (Start)
The identity trees with n=6 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
: 1: [ 0 1 2 3 4 5 ] 1
: O--o--o--o--o--o
:
: 2: [ 0 1 2 3 4 3 ] 2
: O--o--o--o--o
: .--o
:
: 3: [ 0 1 2 3 4 2 ] 2
: O--o--o--o--o
: .--o
:
: 4: [ 0 1 2 3 4 1 ] 2
: O--o--o--o--o
: .--o
:
: 5: [ 0 1 2 3 2 1 ] 3
: O--o--o--o
: .--o
: .--o
:
: 6: [ 0 1 2 3 1 2 ] 2
: O--o--o--o
: .--o--o
:
This gives [1, 4, 1], row n=6 of the triangle.
(End)
PROG
(PARI)
WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
A(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p->Vecrev(p/y), v)}
{ my(T=A(15)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 28 2018
CROSSREFS
KEYWORD
nonn,tabf,eigen
AUTHOR
Christian G. Bower, May 12 2000
STATUS
approved