login
A127625
Triangle T(n,k) = binomial(n-1,k-1)*A001511(k), 1<=k<=n, read by rows.
1
1, 1, 2, 1, 4, 1, 1, 6, 3, 3, 1, 8, 6, 12, 1, 1, 10, 10, 30, 5, 2, 1, 12, 15, 60, 15, 12, 1, 1, 14, 21, 105, 35, 42, 7, 4, 1, 16, 28, 168, 70, 112, 28, 32, 1, 1, 18, 36, 252, 126, 252, 84, 144, 9, 2, 1, 20, 45, 360, 210, 504, 210, 480, 45, 20, 1
OFFSET
1,3
COMMENTS
Column k of Pascal's triangle is multiplied by the k-th entry of the ruler sequence.
LINKS
FORMULA
T(n,n) = A001511(n).
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 4, 1;
1, 6, 3, 3;
1, 8, 6, 12, 1;
1, 10, 10, 30, 5, 2;
1, 12, 15, 60, 15, 12, 1;
...
MATHEMATICA
T[n_, k_]:=Binomial[n-1, k-1]*IntegerExponent[2k, 2]; Table[T[n, k], {n, 9}, {k, n}]//Flatten (* James C. McMahon, Jan 01 2025 *)
CROSSREFS
Cf. A106461 (row sums), A001511.
Sequence in context: A191310 A124845 A191392 * A124844 A133934 A055327
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 20 2007
EXTENSIONS
a(46)-a(66) from James C. McMahon, Jan 01 2025
STATUS
approved