login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124844
Triangle T(n,k)=binomial(n,k)*A061084(k), 0<=k<=n, read by rows.
1
1, 1, 2, 1, 4, -1, 1, 6, -3, 3, 1, 8, -6, 12, -4, 1, 10, -10, 30, -20, 7, 1, 12, -15, 60, -60, 42, -11, 1, 14, -21, 105, -140, 147, -77, 18, 1, 16, -28, 168, -280, 392, -308, 144, -29, 1, 18, -36, 252, -504, 882, -924, 648, -261, 47, 1, 20, -45, 360, -840, 1764, -2310, 2160, -1305, 470, -76
OFFSET
0,3
LINKS
FORMULA
We let A061084 = the diagonal of an infinite matrix, M. Perform P*M and extract the zeros, where P = Pascal's triangle as an infinite lower triangular matrix.
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 4, -1;
1, 6, -3, 3;
1, 8, -6, 12, -4;
1, 10, -10, 30, -20, 7;
1, 12, -15, 60, -60, 42, -11;
1, 14, -21, 105, -140, 147, -77, 18;
...
PROG
(Haskell)
import Data.List (inits)
a124844 n k = a124844_tabl !! n !! k
a124844_row n = a124844_tabl !! n
a124844_tabl = zipWith (zipWith (*))
a007318_tabl $ tail $ inits a061084_list
-- Reinhard Zumkeller, Sep 15 2015
CROSSREFS
Cf. A061084, A000032, A000204 (row sums).
Cf. A007318.
Sequence in context: A124845 A191392 A127625 * A133934 A055327 A105260
KEYWORD
sign,easy,tabl
AUTHOR
Gary W. Adamson, Nov 10 2006
STATUS
approved