login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157783
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.
5
1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
OFFSET
0,4
COMMENTS
Row sums except n=0 are zero.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=3)=[1,2,9,24,81,234,729,2160,6561,...] DELTA [ -1,0,-3,0,-9,0,-27,0,-81,0,-243,0,...] where DELTA is the operator defined in A084938; see A122006 and A000244. - Philippe Deléham, Mar 09 2009
EXAMPLE
Triangle begins
1;
1, -1;
3, -4, 1;
27, -39, 13, -1;
729, -1080, 390, -40, 1;
59049, -88209, 32670, -3630, 121, -1;
14348907, -21493836, 8027019, -914760, 33033, -364, 1;
10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
MAPLE
A157783 := proc(n, k)
product( 3^(i-1)-x, i=1..n) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Oct 15 2013
MATHEMATICA
Clear[f, q, M, n, m];
q = 3;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
CROSSREFS
Cf. A157832, A135950, A022166, A047656 (column k=1), A003462 (subdiagonal k=n-1), A203243 (subdiagonal k=n-2).
Sequence in context: A162498 A134049 A224069 * A123951 A123127 A167876
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 06 2009
STATUS
approved