Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 26 2020 20:57:25
%S 1,1,-1,3,-4,1,27,-39,13,-1,729,-1080,390,-40,1,59049,-88209,32670,
%T -3630,121,-1,14348907,-21493836,8027019,-914760,33033,-364,1,
%U 10460353203,-15683355351,5873190687,-674887059,24995817,-298389,1093
%N Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.
%C Row sums except n=0 are zero.
%C Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=3)=[1,2,9,24,81,234,729,2160,6561,...] DELTA [ -1,0,-3,0,-9,0,-27,0,-81,0,-243,0,...] where DELTA is the operator defined in A084938; see A122006 and A000244. - _Philippe Deléham_, Mar 09 2009
%e Triangle begins
%e 1;
%e 1, -1;
%e 3, -4, 1;
%e 27, -39, 13, -1;
%e 729, -1080, 390, -40, 1;
%e 59049, -88209, 32670, -3630, 121, -1;
%e 14348907, -21493836, 8027019, -914760, 33033, -364, 1;
%e 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
%e 22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
%e Row n=3 is 27 - 39*x + 13*x^2 - x^3.
%p A157783 := proc(n,k)
%p product( 3^(i-1)-x,i=1..n) ;
%p coeftayl(%,x=0,k) ;
%p end proc: # _R. J. Mathar_, Oct 15 2013
%t Clear[f, q, M, n, m];
%t q = 3;
%t f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
%t M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
%t Table[M[n], {n, 1, 10}];
%t Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
%t a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
%t Flatten[a]
%Y Cf. A157832, A135950, A022166, A047656 (column k=1), A003462 (subdiagonal k=n-1), A203243 (subdiagonal k=n-2).
%K sign,tabl
%O 0,4
%A _Roger L. Bagula_, Mar 06 2009