login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123127
Coefficient of X^3 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.
4
-1, -3, -4, 1, 49, -42, -57, -31, 140, 497, -815, -758, 311, 3021, 3796, -13759, -7039, 16086, 45295, 3681, -204684, -10431, 365377, 507914, -618001, -2642435, 1427468, 6214881, 3341553, -16185322, -27959273, 42625665, 85186108, -23867663, -286766767, -193092086, 854985639, 900760205
OFFSET
1,2
COMMENTS
Also sum of the successive powers of all combinations of products of two different roots of the quintic pentanacci polynomial X^5 -X^4 -X^3 -X^2 -X -1; namely (X1*X2)^n + (X1*X3)^n + (X1*X4)^n + (X1*X5)^n + (X2*X3)^n + (X2*X4)^n + (X2*X5)^n + (X3*X4)^n + (X3*X5)^n + (X4*X5)^n, where X1, X2, X3, X4, X5 are the roots. A074048 are the coefficients, with changed signs, of X^4 in the characteristic polynomials of the successive powers of the pentanacci matrix or (X1)^n + (X2)^n + (X3)^n + (X4)^n + (X5)^n.
Let g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1 and {y1,...,y10} be the roots of g(y). Then a(n) = y1^n + ... + y10^n. - Kai Wang, Nov 01 2020
LINKS
FORMULA
G.f.: -x*(1 +4*x +9*x^2 +12*x^3 -30*x^4 +6*x^5 -7*x^6 -9*x^8 +10*x^9)/(1 +x +2*x^2 +3*x^3 +3*x^4 -6*x^5 +x^6 -x^7 -x^9 +x^10). - Colin Barker, May 16 2013
EXAMPLE
a(5) = 49 because the characteristic polynomial of fifth power of pentanacci matrix M^5 is X^5 -31*X^4 +49*X^3 -31*X^2 +9*X -1 in which coefficient of X^3 is 49.
MAPLE
with(linalg): M[1]:=matrix(5, 5, [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]): for n from 2 to 40 do M[n]:=multiply(M[n-1], M[1]) od: seq(coeff(charpoly(M[n], x), x, 3), n=1..40); # Emeric Deutsch, Oct 24 2006
MATHEMATICA
f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, n], x], x][[4]]; Array[f, 36] (* Robert G. Wilson v, Oct 24 2006 *)
LinearRecurrence[{-1, -2, -3, -3, 6, -1, 1, 0, 1, -1}, {-1, -3, -4, 1, 49, -42, -57, -31, 140, 497}, 40] (* Harvey P. Dale, Apr 10 2023 *)
PROG
(PARI) g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1;
my(v=polsym(g(y), 33)); vector(#v-1, n, v[n+1]) \\ Joerg Arndt, Nov 02 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( -x*(1+4*x+9*x^2 +12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2+3*x^3+3*x^4-6*x^5 +x^6 -x^7 -x^9+x^10) )); // G. C. Greubel, Aug 03 2021
(Sage)
def A123127_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( -x*(1+4*x+9*x^2+12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2 +3*x^3+3*x^4-6*x^5+x^6-x^7-x^9+x^10) ).list()
a=A123127_list(40); a[1:] # G. C. Greubel, Aug 03 2021
CROSSREFS
Sequence in context: A224069 A157783 A123951 * A167876 A241833 A332096
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Sep 30 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006
STATUS
approved