login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of X^3 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.
4

%I #44 Apr 10 2023 15:36:54

%S -1,-3,-4,1,49,-42,-57,-31,140,497,-815,-758,311,3021,3796,-13759,

%T -7039,16086,45295,3681,-204684,-10431,365377,507914,-618001,-2642435,

%U 1427468,6214881,3341553,-16185322,-27959273,42625665,85186108,-23867663,-286766767,-193092086,854985639,900760205

%N Coefficient of X^3 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.

%C Also sum of the successive powers of all combinations of products of two different roots of the quintic pentanacci polynomial X^5 -X^4 -X^3 -X^2 -X -1; namely (X1*X2)^n + (X1*X3)^n + (X1*X4)^n + (X1*X5)^n + (X2*X3)^n + (X2*X4)^n + (X2*X5)^n + (X3*X4)^n + (X3*X5)^n + (X4*X5)^n, where X1, X2, X3, X4, X5 are the roots. A074048 are the coefficients, with changed signs, of X^4 in the characteristic polynomials of the successive powers of the pentanacci matrix or (X1)^n + (X2)^n + (X3)^n + (X4)^n + (X5)^n.

%C Let g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1 and {y1,...,y10} be the roots of g(y). Then a(n) = y1^n + ... + y10^n. - _Kai Wang_, Nov 01 2020

%H G. C. Greubel, <a href="/A123127/b123127.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,-3,-3,6,-1,1,0,1,-1).

%F G.f.: -x*(1 +4*x +9*x^2 +12*x^3 -30*x^4 +6*x^5 -7*x^6 -9*x^8 +10*x^9)/(1 +x +2*x^2 +3*x^3 +3*x^4 -6*x^5 +x^6 -x^7 -x^9 +x^10). - _Colin Barker_, May 16 2013

%e a(5) = 49 because the characteristic polynomial of fifth power of pentanacci matrix M^5 is X^5 -31*X^4 +49*X^3 -31*X^2 +9*X -1 in which coefficient of X^3 is 49.

%p with(linalg): M[1]:=matrix(5,5,[1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0]): for n from 2 to 40 do M[n]:=multiply(M[n-1],M[1]) od: seq(coeff(charpoly(M[n],x),x,3),n=1..40); # _Emeric Deutsch_, Oct 24 2006

%t f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1,1,1,1,1}, {1,0,0, 0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}, n], x], x][[4]]; Array[f, 36] (* _Robert G. Wilson v_, Oct 24 2006 *)

%t LinearRecurrence[{-1,-2,-3,-3,6,-1,1,0,1,-1},{-1,-3,-4,1,49,-42,-57,-31,140,497},40] (* _Harvey P. Dale_, Apr 10 2023 *)

%o (PARI) g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1;

%o my(v=polsym(g(y),33)); vector(#v-1,n,v[n+1]) \\ _Joerg Arndt_, Nov 02 2020

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( -x*(1+4*x+9*x^2 +12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2+3*x^3+3*x^4-6*x^5 +x^6 -x^7 -x^9+x^10) )); // _G. C. Greubel_, Aug 03 2021

%o (Sage)

%o def A123127_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( -x*(1+4*x+9*x^2+12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2 +3*x^3+3*x^4-6*x^5+x^6-x^7-x^9+x^10) ).list()

%o a=A123127_list(40); a[1:] # _G. C. Greubel_, Aug 03 2021

%Y Cf. A074048, A123126.

%K sign,easy

%O 1,2

%A _Artur Jasinski_, Sep 30 2006

%E Edited by _N. J. A. Sloane_, Oct 24 2006

%E More terms from _Emeric Deutsch_ and _Robert G. Wilson v_, Oct 24 2006