login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T, read by rows, where T(n,k) = [T^(2^k)](n-k,0) * (2^k)^(n-k) for n>=k>=0 such that row n of the 2^(n-1)-th root of T consists solely of integers given by: [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=0.
10

%I #23 Nov 13 2016 15:46:06

%S 1,1,1,3,4,1,23,40,16,1,512,1072,576,64,1,34939,84736,56064,8704,256,

%T 1,7637688,20930240,16261120,3190784,135168,1024,1,5539372954,

%U 16855075840,14918594560,3501457408,191561728,2129920,4096,1,13703105571256,45696508860928,45120522420224,12230958252032,813938245632,11856248832,33816576,16384,1,118149647382446899,427467706869837824,463647865862488064,141682892446105600,11040640699727872,197960679817216,745898246144,538968064,65536,1

%N Triangle T, read by rows, where T(n,k) = [T^(2^k)](n-k,0) * (2^k)^(n-k) for n>=k>=0 such that row n of the 2^(n-1)-th root of T consists solely of integers given by: [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=0.

%C Compare matrix power formulas to those of triangle A134484, where A134484(n,k) = 2^[n(n-1) - k(k-1)]*C(n,k).

%H Paul D. Hanna, <a href="/A134049/b134049.txt">Table of n, a(n) for n = 0..495, of rows 0..30 of the flattened triangle.</a>

%F The value of (2^m)-th matrix power of T at row n and column k is related to row n+m and column k+m of T by: [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0.

%e Below we illustrate this triangle and its 2 main properties:

%e (1) [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0;

%e (2) [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=k>=0.

%e Triangle T begins:

%e 1;

%e 1, 1;

%e 3, 4, 1;

%e 23, 40, 16, 1;

%e 512, 1072, 576, 64, 1;

%e 34939, 84736, 56064, 8704, 256, 1;

%e 7637688, 20930240, 16261120, 3190784, 135168, 1024, 1;

%e 5539372954, 16855075840, 14918594560, 3501457408, 191561728, 2129920, 4096, 1;

%e 13703105571256, 45696508860928, 45120522420224, 12230958252032, 813938245632, 11856248832, 33816576, 16384, 1;

%e 118149647382446899, 427467706869837824, 463647865862488064, 141682892446105600, 11040640699727872, 197960679817216, 745898246144, 538968064, 65536, 1;

%e ...

%e (1) Illustrate [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) as follows.

%e Matrix square, T^2, begins:

%e 1;

%e 2, 1;

%e 10, 8, 1;

%e 134, 144, 32, 1;

%e 5296, 7008, 2176, 128, 1;

%e 654070, 1016320, 398848, 33792, 512, 1; ...

%e where [T^(2^1)](n,k) = T(n+1,k+1)/2^(n-k).

%e Matrix 4th power, T^4, begins:

%e 1;

%e 4, 1;

%e 36, 16, 1;

%e 876, 544, 64, 1;

%e 63520, 49856, 8448, 256, 1;

%e 14568940, 13677568, 2993152, 133120, 1024, 1; ...

%e where [T^(2^2)](n,k) = T(n+2,k+2)/4^(n-k).

%e Matrix 8th power, T^8, begins:

%e 1;

%e 8, 1;

%e 136, 32, 1;

%e 6232, 2112, 128, 1;

%e 854848, 374144, 33280, 512, 1;

%e 373259224, 198715392, 23156736, 528384, 2048, 1; ...

%e where [T^(2^3)](n,k) = T(n+3,k+3)/8^(n-k).

%e ...

%e (2) Illustrate [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) as follows.

%e Matrix square root, T^(1/2), begins:

%e 1;

%e 1/2, 1;

%e 1, 2, 1; <== row 2: [T^(1/2^1)](2,k) = (2^k)^(2-k), k=0..2

%e 9/2, 12, 8, 1;

%e 58, 184, 160, 32, 1;

%e 4475/2, 8192, 8576, 2304, 128, 1;

%e 269828, 1118048, 1355776, 448512, 34816, 512, 1; ...

%e Matrix 4th root, T^(1/4), begins:

%e 1;

%e 1/4, 1;

%e 3/8, 1, 1;

%e 1, 4, 4, 1; <== row 3: [T^(1/2^2)](3,k) = (2^k)^(3-k), k=0..3

%e 15/2, 36, 48, 16, 1;

%e 667/4, 928, 1472, 640, 64, 1;

%e 11180, 71600, 131072, 68608, 9216, 256, 1; ...

%e Matrix 8th root, T^(1/8), begins:

%e 1;

%e 1/8, 1;

%e 5/32, 1/2, 1;

%e 1/4, 3/2, 2, 1;

%e 1, 8, 16, 8, 1; <== row 4: [T^(1/2^3)](4,k) = (2^k)^(4-k), k=0..4

%e 107/8, 120, 288, 192, 32, 1;

%e 977/2, 5336, 14848, 11776, 2560, 128, 1; ...

%e Matrix 16th root, T^(1/8), begins:

%e 1;

%e 1/16, 1;

%e 9/128, 1/4, 1;

%e 9/128, 5/8, 1, 1;

%e 11/128, 2, 6, 4, 1;

%e 1, 16, 64, 64, 16, 1; <== row 5: [T^(1/2^4)](5,k) = (2^k)^(5-k), k=0..5

%e 139/8, 428, 1920, 2304, 768, 64, 1; ...

%o (PARI) {T(n,k)=local(M=Mat(1),L,R);for(i=1,n, L=sum(j=1,#M,-(M^0-M)^j/j);M=sum(j=0,#L,(L/2^(#L-1))^j/j!); R=matrix(#M+1,#M+1,r,c,if(r>=c,if(r<=#M,M[r,c],2^((c-1)*(#M+1-c))))); M=R^(2^(#M-1)) );M[n+1,k+1]}

%o for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

%Y Cf. columns: A134050, A134051, A134052, A134053; A134054 (row sums).

%Y Cf. A134484.

%Y Cf. A274477 (matrix log).

%K nonn,tabl

%O 0,4

%A _Paul D. Hanna_, Oct 04 2007, Oct 28 2007