login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259877
If n is even then a(n) = n!/( 2^(n/2)*(n/2)! ), otherwise a(n) = n!/( 3*2^((n-1)/2)*((n-3)/2)! ).
2
1, 1, 3, 10, 15, 105, 105, 1260, 945, 17325, 10395, 270270, 135135, 4729725, 2027025, 91891800, 34459425, 1964187225, 654729075, 45831035250, 13749310575, 1159525191825, 316234143225, 31623414322500, 7905853580625, 924984868933125, 213458046676875, 28887988983603750, 6190283353629375
OFFSET
2,3
LINKS
D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. See N_n.
D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. [Annotated scanned copy]
FORMULA
a(n) = (n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!). - Wesley Ivan Hurt, Jul 10 2015
a(n+1) = a(n)*n*(n+1)/6 if n is even, a(n+1) = 6*a(n)/(n-1) if n is odd. - Chai Wah Wu, Jul 15 2015
a(2*n) = A001147(n), a(2*n+1) = A000457(n-1). - Yuchun Ji, Nov 02 2020
MAPLE
f:=proc(n) if n mod 2 = 0 then
n!/(2^(n/2)*(n/2)!) else
n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
[seq(f(n), n=2..30)];
MATHEMATICA
Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
PROG
(PARI) main(size)={v=vector(size); for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v); } /* Anders Hellström, Jul 10 2015 */
(Python)
from __future__ import division
A259877_list, a = [1], 1
for n in range(2, 10**2):
....a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
....A259877_list.append(a) # Chai Wah Wu, Jul 15 2015
CROSSREFS
A001147 alternating with A000457. Interlaced diagonal of A008299.
Sequence in context: A217278 A175336 A370437 * A182334 A051420 A367257
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 09 2015
STATUS
approved