OFFSET
2,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 2..501
D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. See N_n.
D. L. Andrews and T. Thirunamachandran, On three-dimensional rotational averages, J. Chem. Phys., 67 (1977), 5026-5033. [Annotated scanned copy]
FORMULA
a(n) = (n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!). - Wesley Ivan Hurt, Jul 10 2015
a(n+1) = a(n)*n*(n+1)/6 if n is even, a(n+1) = 6*a(n)/(n-1) if n is odd. - Chai Wah Wu, Jul 15 2015
MAPLE
f:=proc(n) if n mod 2 = 0 then
n!/(2^(n/2)*(n/2)!) else
n!/( 3*2^((n-1)/2)*((n-3)/2)! ); fi; end;
[seq(f(n), n=2..30)];
MATHEMATICA
Table[(n!/6)*2^(-n/2)*(((2^(1/2)*(1-(-1)^n))/(n/2-3/2)!)+3*(1+(-1)^n)/(n/2)!), {n, 2, 30}] (* Wesley Ivan Hurt, Jul 10 2015 *)
PROG
(PARI) main(size)={v=vector(size); for(n=2, size+1, if(n%2==0, v[n-1]=n!/(2^(n/2)*(n/2)!), v[n-1]=n!/( 3*2^((n-1)/2)*((n-3)/2)!))); return(v); } /* Anders Hellström, Jul 10 2015 */
(Python)
from __future__ import division
A259877_list, a = [1], 1
for n in range(2, 10**2):
....a = 6*a//(n-1) if n % 2 else a*n*(n+1)//6
....A259877_list.append(a) # Chai Wah Wu, Jul 15 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 09 2015
STATUS
approved