The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217278 Sequences A124174 and A006454 interlaced. 3
 0, 0, 1, 3, 10, 15, 45, 120, 351, 528, 1540, 4095, 11935, 17955, 52326, 139128, 405450, 609960, 1777555, 4726275, 13773376, 20720703, 60384555, 160554240, 467889345, 703893960, 2051297326, 5454117903, 15894464365, 23911673955, 69683724540, 185279454480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(2n) and 2*a(2n) + 1 are triangular. a(2n + 1) is triangular and a(2n + 1)/2 is the harmonic mean of consecutive triangular numbers (therefore, a(2n + 1) + 1 is square). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,34,0,-34,0,-1,0,1). FORMULA a(n) = 35*(a(n-4) - a(n-8)) + a(n-12). lim n --> infinity a(2n)/a(2n - 1) = (3 + sqrt(8))/2. From Raphie Frank, Dec 21 2015: (Start) a(2*n + 1) = 1/64*(((4 + sqrt(2)) * (1 - (-1)^(n+1) * sqrt(2))^(2*floor((n+1)/2)) + (4 - sqrt(2)) * (1+(-1)^(n+1) * sqrt(2))^(2*floor((n+1)/2))))^2 - 1. a(2*n + 2) = 1/2*(3*(a(2*n + 1)) + sqrt((a(2*n + 1)) + 1) * sqrt(8*(a(2*n + 1)) + 1) + 1). (End) EXAMPLE a(18) = 35*(52326 - 1540) + 45 = 1777555, a(19) = 35*(139128 - 4095) + 120 = 4726275. MATHEMATICA LinearRecurrence[{0, 1, 0, 34, 0, -34, 0, -1, 0, 1}, {0, 0, 1, 3, 10, 15, 45, 120, 351, 528}, 40] (* Harvey P. Dale, Aug 04 2019 *) PROG (PARI) concat([0, 0], Vec(-x^2*(3*x^5+x^4+12*x^3+9*x^2+3*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)*(x^4+6*x^2+1)) + O(x^100))) \\ Colin Barker, Jun 23 2015 CROSSREFS Cf. (sqrt(8a(2n) + 1) - 1)/2 = A216134(n) = A216162(2n + 1). Cf. sqrt(a(2n+1) + 1) = A006452(n + 1) = A216162(2n + 2). Cf. (sqrt(8a(2n+1) + 1) - 1)/2 = A006451(n). Sequence in context: A020330 A023861 A037345 * A175336 A259877 A182334 Adjacent sequences:  A217275 A217276 A217277 * A217279 A217280 A217281 KEYWORD nonn,easy AUTHOR Raphie Frank, Sep 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 12:28 EST 2021. Contains 349596 sequences. (Running on oeis4.)