login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346743
Irregular triangular array read by rows. T(n,k) is the number of matrices in GL_n(F_2) having order k, 1<=k<=2^n-1, n>=1.
0
1, 1, 3, 2, 1, 21, 56, 42, 0, 0, 48, 1, 315, 1232, 3780, 1344, 5040, 5760, 0, 0, 0, 0, 0, 0, 0, 2688, 1, 6975, 75392, 416640, 666624, 1249920, 476160, 624960, 0, 0, 0, 833280, 0, 1428480, 1333248, 0, 0, 0, 0, 0, 952320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1935360
OFFSET
1,3
LINKS
M. R. Darafsheh, Order of elements in the groups related to the general linear group, Finite fields and their applications, 11 (2005), 738-747.
Joseph Kung, The Cycle Structure of a Linear Transformation over a Finite Field, Linear Algebra and its Applications, Vol 36, 1981, pages 141-155.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,2^n - 1) = A346019(n).
EXAMPLE
1,
1, 3, 2,
1, 21, 56, 42, 0, 0, 48,
1, 315, 1232, 3780, 1344, 5040, 5760, 0, 0, 0, 0, 0, 0, 0, 2688
MATHEMATICA
nn = 7; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] :=Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; A001037 =Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; Table[a = Drop[Transpose[ Table[g[u_, v_, deg_] :=Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &,
Level[Table[IntegerPartitions[n, {0, n}, Range[Drop[FactorList[z^k - 1, Modulus -> q], 1][[1, 2]]]], {n, 0, nn}], {2}]]]; degreelist =Map[Exponent[#, z] &, Drop[FactorList[z^k - 1, Modulus -> q], 1][[All, 1]]]; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[g[u, 1, deg], {deg, degreelist}], {u, 0, nn}], u], {k, 1, 2^nn - 1}]], 1][[n]]; Nest[Append[#, a[[Length[#] + 1]] - Sum[#[[j]], {j, Drop[Divisors[Length[#] + 1], -1]}]] & , {1}, 2^n - 2], {n, 1, nn}]
CROSSREFS
Cf. A002884 (row sums), A346019.
Sequence in context: A107862 A117265 A107727 * A087041 A357675 A152790
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jul 31 2021
STATUS
approved