login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346745
Decimal expansion of Product_{k>=2} (1 - 1/k^12).
0
9, 9, 9, 7, 5, 3, 9, 1, 3, 9, 2, 1, 8, 9, 3, 2, 5, 6, 0, 0, 3, 4, 4, 8, 5, 7, 0, 6, 4, 1, 9, 0, 9, 7, 2, 7, 1, 8, 0, 3, 3, 9, 7, 1, 1, 4, 7, 2, 6, 0, 9, 9, 5, 3, 7, 2, 5, 5, 6, 3, 1, 3, 8, 7, 4, 0, 7, 6, 0, 1, 0, 3, 6, 5, 7, 8, 4, 2, 5, 7, 0, 7, 2, 8, 6, 9, 5
OFFSET
0,1
FORMULA
Equals sinh(Pi) * cosh(Pi*sqrt(3)/2)^2 * (cosh(Pi) - cos(Pi*sqrt(3))) / (24*Pi^5).
Equals exp(Sum_{j>=1} (1 - zeta(12*j))/j). - Vaclav Kotesovec, Aug 01 2021
EXAMPLE
0.999753913921893256003448570641909727180...
MAPLE
evalf(sinh(Pi) * cosh(Pi*sqrt(3)/2)^2 * (cosh(Pi) - cos(Pi*sqrt(3))) / (24*Pi^5), 120); # Vaclav Kotesovec, Aug 01 2021
MATHEMATICA
RealDigits[Sinh[Pi]*Cosh[Pi*Sqrt[3]/2]^2*(Cosh[Pi] - Cos[Pi*Sqrt[3]])/(24*Pi^5), 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
PROG
(PARI) exp(suminf(j=1, (1 - zeta(12*j))/j)) \\ Vaclav Kotesovec, Aug 01 2021
KEYWORD
nonn,cons
AUTHOR
Sean A. Irvine, Jul 31 2021
STATUS
approved