login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{k>=2} (1 - 1/k^12).
0

%I #18 Aug 06 2024 05:56:52

%S 9,9,9,7,5,3,9,1,3,9,2,1,8,9,3,2,5,6,0,0,3,4,4,8,5,7,0,6,4,1,9,0,9,7,

%T 2,7,1,8,0,3,3,9,7,1,1,4,7,2,6,0,9,9,5,3,7,2,5,5,6,3,1,3,8,7,4,0,7,6,

%U 0,1,0,3,6,5,7,8,4,2,5,7,0,7,2,8,6,9,5

%N Decimal expansion of Product_{k>=2} (1 - 1/k^12).

%H Michael I. Shamos, <a href="https://citeseerx.ist.psu.edu/pdf/ae33a269baba5e8b1038e719fb3209e8a00abec5">Shamos's catalog of the real numbers</a> (2011).

%F Equals sinh(Pi) * cosh(Pi*sqrt(3)/2)^2 * (cosh(Pi) - cos(Pi*sqrt(3))) / (24*Pi^5).

%F Equals exp(Sum_{j>=1} (1 - zeta(12*j))/j). - _Vaclav Kotesovec_, Aug 01 2021

%e 0.999753913921893256003448570641909727180...

%p evalf(sinh(Pi) * cosh(Pi*sqrt(3)/2)^2 * (cosh(Pi) - cos(Pi*sqrt(3))) / (24*Pi^5), 120); # _Vaclav Kotesovec_, Aug 01 2021

%t RealDigits[Sinh[Pi]*Cosh[Pi*Sqrt[3]/2]^2*(Cosh[Pi] - Cos[Pi*Sqrt[3]])/(24*Pi^5), 10, 120][[1]] (* _Amiram Eldar_, Jun 12 2023 *)

%o (PARI) exp(suminf(j=1, (1 - zeta(12*j))/j)) \\ _Vaclav Kotesovec_, Aug 01 2021

%Y Cf. A109219, A175615, A175616, A175617, A175618, A175619, A339745.

%K nonn,cons

%O 0,1

%A _Sean A. Irvine_, Jul 31 2021