login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175616
Decimal expansion of product_{n>=2} (1-n^(-5)).
3
9, 6, 3, 2, 5, 6, 5, 6, 1, 7, 5, 7, 5, 5, 9, 0, 9, 7, 3, 7, 3, 0, 4, 6, 0, 3, 4, 8, 8, 3, 9, 7, 5, 1, 9, 5, 5, 4, 3, 5, 2, 0, 7, 5, 7, 8, 5, 3, 4, 2, 2, 6, 3, 7, 3, 9, 5, 1, 6, 8, 8, 5, 0, 4, 2, 7, 6, 9, 4, 4, 2, 1, 8, 8, 7, 6, 7, 8, 1, 3, 0, 4, 6, 3, 6, 3, 5, 8, 0, 4, 6, 8, 6, 0, 9, 7, 9, 6, 9, 8, 7, 0, 9, 6, 8
OFFSET
0,1
LINKS
FORMULA
Equals product_{t=1..4} 1/Gamma(2-exp(2*Pi*i*t/5)), where i is the imaginary unit.
Equals exp(Sum_{j>=1} (1 - zeta(5*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(Gamma(2 + phi/2 - i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 + phi/2 + i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 - 1/(2*phi) - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(2 - 1/(2*phi) + i*5^(1/4)*(sqrt(phi)/2))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and i is the imaginary unit. - Vaclav Kotesovec, Dec 15 2020
EXAMPLE
0.96325656175755909737304603488397519554352075785342263739516...
MATHEMATICA
g[k_] := Gamma[Root[1 - # + #^2 - #^3 + #^4 & , k]]; RealDigits[ 1/(5*g[1]*g[2]*g[3]*g[4]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
PROG
(PARI) exp(suminf(j=1, (1 - zeta(5*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 26 2010
STATUS
approved