login
A200232
Decimal expansion of greatest x satisfying 3*x^2-2*cos(x)=2*sin(x).
3
9, 6, 3, 2, 9, 1, 3, 7, 6, 6, 1, 9, 6, 7, 9, 1, 0, 4, 6, 5, 5, 6, 4, 1, 8, 2, 9, 6, 6, 4, 1, 6, 4, 2, 3, 0, 2, 3, 0, 3, 9, 1, 9, 8, 6, 7, 2, 7, 0, 6, 2, 5, 1, 0, 1, 2, 1, 4, 5, 6, 4, 6, 1, 4, 8, 6, 2, 1, 1, 4, 2, 3, 8, 3, 8, 8, 9, 9, 3, 5, 1, 0, 0, 4, 1, 0, 9, 7, 1, 9, 4, 2, 1, 6, 6, 1, 4, 4, 8
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.508066683701868134653059484203509821...
greatest x: 0.9632913766196791046556418296641642...
MATHEMATICA
a = 3; b = -2; c = 2;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.51, -.50}, WorkingPrecision -> 110]
RealDigits[r] (* A200231 *)
r = x /. FindRoot[f[x] == g[x], {x, .96, .97}, WorkingPrecision -> 110]
RealDigits[r] (* A200232 *)
PROG
(PARI) a=3; b=-2; c=2; solve(x=.96, .97, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
Cf. A199949.
Sequence in context: A198573 A068925 A175616 * A198997 A271172 A019683
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved