login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109219
Decimal expansion of Product_{n >= 2} 1-n^(-3).
12
8, 0, 9, 3, 9, 6, 5, 9, 7, 3, 6, 6, 2, 9, 0, 1, 0, 9, 5, 7, 8, 6, 8, 0, 4, 7, 8, 7, 2, 6, 3, 8, 2, 1, 1, 9, 3, 7, 2, 7, 8, 7, 6, 4, 8, 2, 6, 1, 1, 3, 0, 1, 6, 5, 8, 7, 7, 5, 8, 3, 3, 2, 4, 9, 0, 8, 8, 1, 4, 9, 1, 1, 3, 7, 3, 6, 2, 2, 7, 8, 9, 3, 7, 4, 6, 0, 1, 8, 3, 3, 8, 5, 7, 3, 5, 3, 0, 1, 4, 6, 2, 7, 1, 2, 6
OFFSET
0,1
COMMENTS
The physical applications of this kind of product (with s<0) can be found in the Klauder et al. reference. - Karol A. Penson, Feb 24 2006
LINKS
J. R. Klauder, K. A. Penson and J.-M. Sixdeniers, Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems, Physical Review A, Vol. 64, p. 013817 (2001).
FORMULA
Equals cosh((sqrt(3)*Pi)/2)/(3*Pi).
Product_{n >= 2} (1 - 1/n^p) simplifies, if p is odd, to 1/(p * Product(Gamma(- (-1)^(j*(1 + 1/p))), (j, 1, p - 1})) and, if p is even, to the elementary Product(Sin(Pi*(-1)^((2*j)/p))/(Pi*I), (j, 1, p/2 - 1}) / p. - David W. Cantrell, Feb 24 2006
Equals exp(Sum_{j>=1} (1 - zeta(3*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(Gamma((5-i*sqrt(3))/2)*Gamma((5+i*sqrt(3))/2)). - Amiram Eldar, Sep 01 2020
EXAMPLE
0.809396597366290109578680478726382119372787648261130...
MATHEMATICA
RealDigits[N[Cosh[(Sqrt[3]*Pi)/2]/(3*Pi), 150]] (* T. D. Noe, Apr 24 2006 *)
PROG
(PARI) exp(suminf(j=1, (1 - zeta(3*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Zak Seidov, Apr 17 2006
EXTENSIONS
Corrected and extended by T. D. Noe, Apr 24 2006
STATUS
approved