The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277435 Decimal expansion of lim_{n->inf} (2 - sqrt(2)^^n)/log(2)^n, where x^^n denotes tetration. 5
 6, 3, 2, 0, 9, 8, 6, 6, 1, 0, 5, 0, 8, 2, 9, 2, 5, 0, 3, 5, 5, 4, 5, 0, 6, 4, 5, 9, 9, 0, 7, 8, 0, 8, 6, 2, 7, 9, 9, 4, 7, 4, 5, 5, 2, 3, 2, 4, 1, 6, 4, 4, 7, 9, 6, 6, 9, 7, 2, 3, 3, 8, 2, 4, 3, 2, 5, 8, 6, 1, 6, 2, 7, 6, 1, 5, 0, 9, 6, 2, 1, 4, 7, 0, 9, 1, 7, 6, 6, 4, 9, 4, 2, 6, 6, 7, 7, 3, 7, 1, 6, 3, 7, 9, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Tetration x^^n is defined recursively: x^^0 = 1, x^^n = x^(x^^(n-1)). Note that sqrt(2)^^inf = lim_{n->inf} sqrt(2)^^n = 2. Asymptotically, sqrt(2)^^n = 2 - O(log(2)^n). This constant is the coefficient in the O(log(2)^n) term. Furthermore, sqrt(2)^^n = 2 - a*log(2)^n + (a^2/(4*(1 - 1/log(2))))*log(2)^(2*n) + O(log(2)^(3*n)). LINKS Eric Weisstein's World of Mathematics, Power Tower Wikipedia, Tetration FORMULA a = 2*sqrt(2)*A260691/(1-log(2)). EXAMPLE 0.63209866105082925035545064599078... MATHEMATICA RealDigits[SequenceLimit[1`200 Table[(2 - Power @@ Table[Sqrt[2], {n}])/Log[2]^n, {n, 1, 200}]], 10, 100][[1]] CROSSREFS Cf. A198094, A260691. Sequence in context: A108451 A122178 A126445 * A033326 A068996 A068924 Adjacent sequences: A277432 A277433 A277434 * A277436 A277437 A277438 KEYWORD nonn,cons AUTHOR Vladimir Reshetnikov, Oct 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 15:46 EDT 2023. Contains 361599 sequences. (Running on oeis4.)