login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*2^k for n>0, with a(0)=1.
11

%I #23 Jun 18 2022 11:30:54

%S 1,1,3,17,179,3489,127459,8873137,1195313043,315321098561,

%T 164239990789571,169810102632595281,349630019758589841523,

%U 1436268949679165936016097,11784559509424676876673518499,193243076262167105764611875139569

%N a(n) = Sum_{k=0..n-1} C(n-1,k)*a(k)*2^k for n>0, with a(0)=1.

%C Generated by a generalization of a recurrence for the Bell numbers (A000110).

%C Starting with offset 1 = eigensequence of triangle A013609. - _Gary W. Adamson_, Sep 04 2009

%H Seiichi Manyama, <a href="/A126443/b126443.txt">Table of n, a(n) for n = 0..81</a>

%F a(n) = Sum_{k=0..n*(n-1)/2} A126347(n,k)*2^k.

%F G.f. A(x) satisfies: A(x) = 1 + x*A(2*x/(1 - x))/(1 - x). - _Ilya Gutkovskiy_, Sep 02 2019

%F a(n) ~ c * 2^(n*(n-1)/2), where c = A081845 = 4.7684620580627434482997985... - _Vaclav Kotesovec_, Sep 16 2019

%o (PARI) a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*a(k)*2^k))

%Y Cf. A126347, A000110.

%Y Cf. A013609. - _Gary W. Adamson_, Sep 04 2009

%Y Column k=2 of A306245.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 01 2007