login
A336928
a(n) = A329697(sigma(n)), where A329697 is totally additive with a(2) = 0 and a(p) = 1 + a(p-1) for odd primes.
5
0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 2, 1, 1, 3, 2, 3, 1, 3, 0, 2, 1, 2, 3, 3, 1, 2, 2, 2, 0, 4, 1, 3, 1, 4, 3, 2, 2, 3, 3, 1, 2, 3, 3, 2, 1, 3, 4, 4, 2, 4, 3, 2, 2, 2, 1, 3, 2, 3, 3, 1, 2, 5, 3, 2, 1, 4, 1, 2, 2, 4, 3, 4, 3, 3, 1, 3, 1, 4, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 2, 3, 0, 2, 2, 4, 4, 5, 3, 5, 2, 3, 2, 4, 1
OFFSET
1,4
FORMULA
Additive with a(p^e) = A329697(sigma(p^e)) = A329697(1+ p + p^2 + ... + p^e).
a(n) = A329697(A000203(n)).
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A336928(n) = A329697(sigma(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 11 2020
STATUS
approved